AgentTokenBufferMemory#
- class langchain.agents.openai_functions_agent.agent_token_buffer_memory.AgentTokenBufferMemory[source]#
Bases:
BaseChatMemory
Memory used to save agent output AND intermediate steps.
- Parameters:
human_prefix – Prefix for human messages. Default is “Human”.
ai_prefix – Prefix for AI messages. Default is “AI”.
llm – Language model.
memory_key – Key to save memory under. Default is “history”.
max_token_limit – Maximum number of tokens to keep in the buffer. Once the buffer exceeds this many tokens, the oldest messages will be pruned. Default is 12000.
return_messages – Whether to return messages. Default is True.
output_key – Key to save output under. Default is “output”.
intermediate_steps_key – Key to save intermediate steps under. Default is “intermediate_steps”.
format_as_tools – Whether to format as tools. Default is False.
- param ai_prefix: str = 'AI'#
- param chat_memory: BaseChatMessageHistory [Optional]#
- param format_as_tools: bool = False#
- param human_prefix: str = 'Human'#
- param input_key: str | None = None#
- param intermediate_steps_key: str = 'intermediate_steps'#
- param llm: BaseLanguageModel [Required]#
- param max_token_limit: int = 12000#
The max number of tokens to keep in the buffer. Once the buffer exceeds this many tokens, the oldest messages will be pruned.
- param memory_key: str = 'history'#
- param output_key: str = 'output'#
- param return_messages: bool = True#
- async aclear() None #
Clear memory contents.
- Return type:
None
- async aload_memory_variables(inputs: Dict[str, Any]) Dict[str, Any] #
Async return key-value pairs given the text input to the chain.
- Parameters:
inputs (Dict[str, Any]) – The inputs to the chain.
- Returns:
A dictionary of key-value pairs.
- Return type:
Dict[str, Any]
- async asave_context(inputs: Dict[str, Any], outputs: Dict[str, str]) None #
Save context from this conversation to buffer.
- Parameters:
inputs (Dict[str, Any])
outputs (Dict[str, str])
- Return type:
None
- clear() None #
Clear memory contents.
- Return type:
None
- load_memory_variables(inputs: Dict[str, Any]) Dict[str, Any] [source]#
Return history buffer.
- Parameters:
inputs (Dict[str, Any]) – Inputs to the agent.
- Returns:
A dictionary with the history buffer.
- Return type:
Dict[str, Any]
- save_context(inputs: Dict[str, Any], outputs: Dict[str, Any]) None [source]#
Save context from this conversation to buffer. Pruned.
- Parameters:
inputs (Dict[str, Any]) – Inputs to the agent.
outputs (Dict[str, Any]) – Outputs from the agent.
- Return type:
None
- property buffer: List[BaseMessage]#
String buffer of memory.