Skip to main content
Ctrl+K
🦜🔗 LangChain  documentation - Home

Site Navigation

  • Core
  • Langchain
  • Text Splitters
  • AI21
  • Airbyte
    • Anthropic
    • AstraDB
    • AWS
    • Azure Dynamic Sessions
    • Chroma
    • Cohere
    • Couchbase
    • Elasticsearch
    • Exa
    • Fireworks
    • Google Community
    • Google GenAI
    • Google VertexAI
    • Groq
    • Huggingface
    • Milvus
    • MistralAI
    • MongoDB
    • Nomic
    • Nvidia Ai Endpoints
    • Ollama
    • OpenAI
    • Pinecone
    • Postgres
    • Prompty
    • Qdrant
    • Robocorp
    • Together
    • Unstructured
    • VoyageAI
    • Weaviate
  • LangChain docs
  • GitHub
  • X / Twitter

Site Navigation

  • Core
  • Langchain
  • Text Splitters
  • AI21
  • Airbyte
    • Anthropic
    • AstraDB
    • AWS
    • Azure Dynamic Sessions
    • Chroma
    • Cohere
    • Couchbase
    • Elasticsearch
    • Exa
    • Fireworks
    • Google Community
    • Google GenAI
    • Google VertexAI
    • Groq
    • Huggingface
    • Milvus
    • MistralAI
    • MongoDB
    • Nomic
    • Nvidia Ai Endpoints
    • Ollama
    • OpenAI
    • Pinecone
    • Postgres
    • Prompty
    • Qdrant
    • Robocorp
    • Together
    • Unstructured
    • VoyageAI
    • Weaviate
  • LangChain docs
  • GitHub
  • X / Twitter

Section Navigation

  • agents
  • beta
  • caches
  • callbacks
  • chat_history
  • chat_loaders
  • chat_sessions
  • document_loaders
  • documents
  • embeddings
    • Embeddings
    • DeterministicFakeEmbedding
    • FakeEmbeddings
  • example_selectors
  • exceptions
  • globals
  • graph_vectorstores
  • indexing
  • language_models
  • load
  • memory
  • messages
  • output_parsers
  • outputs
  • prompt_values
  • prompts
  • rate_limiters
  • retrievers
  • runnables
  • stores
  • structured_query
  • sys_info
  • tools
  • tracers
  • utils
  • vectorstores
  • langchain_core 0.2.29

embeddings#

Classes

embeddings.embeddings.Embeddings()

Interface for embedding models.

embeddings.fake.DeterministicFakeEmbedding

Deterministic fake embedding model for unit testing purposes.

embeddings.fake.FakeEmbeddings

Fake embedding model for unit testing purposes.

previous

BaseDocumentTransformer

next

Embeddings

© Copyright 2023, LangChain Inc.