Source code for langchain_mongodb.vectorstores

from __future__ import annotations

import logging
from importlib.metadata import version
from typing import (
    Any,
    Callable,
    Dict,
    Generator,
    Iterable,
    List,
    Optional,
    Tuple,
    TypeVar,
    Union,
)

import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.runnables.config import run_in_executor
from langchain_core.vectorstores import VectorStore
from pymongo import MongoClient
from pymongo.collection import Collection
from pymongo.driver_info import DriverInfo
from pymongo.errors import CollectionInvalid

from langchain_mongodb.index import (
    create_vector_search_index,
    update_vector_search_index,
)
from langchain_mongodb.pipelines import vector_search_stage
from langchain_mongodb.utils import (
    make_serializable,
    maximal_marginal_relevance,
    oid_to_str,
    str_to_oid,
)

VST = TypeVar("VST", bound=VectorStore)

logger = logging.getLogger(__name__)

DEFAULT_INSERT_BATCH_SIZE = 100_000


[docs] class MongoDBAtlasVectorSearch(VectorStore): """MongoDB Atlas vector store integration. MongoDBAtlasVectorSearch performs data operations on text, embeddings and arbitrary data. In addition to CRUD operations, the VectorStore provides Vector Search based on similarity of embedding vectors following the Hierarchical Navigable Small Worlds (HNSW) algorithm. This supports a number of models to ascertain scores, "similarity" (default), "MMR", and "similarity_score_threshold". These are described in the search_type argument to as_retriever, which provides the Runnable.invoke(query) API, allowing MongoDBAtlasVectorSearch to be used within a chain. Setup: * Set up a MongoDB Atlas cluster. The free tier M0 will allow you to start. Search Indexes are only available on Atlas, the fully managed cloud service, not the self-managed MongoDB. Follow [this guide](https://www.mongodb.com/basics/mongodb-atlas-tutorial) * Create a Collection and a Vector Search Index.The procedure is described [here](https://www.mongodb.com/docs/atlas/atlas-vector-search/create-index/#procedure). * Install ``langchain-mongodb`` .. code-block:: bash pip install -qU langchain-mongodb pymongo .. code-block:: python import getpass MONGODB_ATLAS_CLUSTER_URI = getpass.getpass("MongoDB Atlas Cluster URI:") Key init args — indexing params: embedding: Embeddings Embedding function to use. Key init args — client params: collection: Collection MongoDB collection to use. index_name: str Name of the Atlas Search index. Instantiate: .. code-block:: python from pymongo import MongoClient from langchain_mongodb.vectorstores import MongoDBAtlasVectorSearch from pymongo import MongoClient from langchain_openai import OpenAIEmbeddings # initialize MongoDB python client client = MongoClient(MONGODB_ATLAS_CLUSTER_URI) DB_NAME = "langchain_test_db" COLLECTION_NAME = "langchain_test_vectorstores" ATLAS_VECTOR_SEARCH_INDEX_NAME = "langchain-test-index-vectorstores" MONGODB_COLLECTION = client[DB_NAME][COLLECTION_NAME] vector_store = MongoDBAtlasVectorSearch( collection=MONGODB_COLLECTION, embedding=OpenAIEmbeddings(), index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME, relevance_score_fn="cosine", ) Add Documents: .. code-block:: python from langchain_core.documents import Document document_1 = Document(page_content="foo", metadata={"baz": "bar"}) document_2 = Document(page_content="thud", metadata={"bar": "baz"}) document_3 = Document(page_content="i will be deleted :(") documents = [document_1, document_2, document_3] ids = ["1", "2", "3"] vector_store.add_documents(documents=documents, ids=ids) Delete Documents: .. code-block:: python vector_store.delete(ids=["3"]) Search: .. code-block:: python results = vector_store.similarity_search(query="thud",k=1) for doc in results: print(f"* {doc.page_content} [{doc.metadata}]") .. code-block:: python * thud [{'_id': '2', 'baz': 'baz'}] Search with filter: .. code-block:: python results = vector_store.similarity_search(query="thud",k=1,post_filter=[{"bar": "baz"]}) for doc in results: print(f"* {doc.page_content} [{doc.metadata}]") .. code-block:: python * thud [{'_id': '2', 'baz': 'baz'}] Search with score: .. code-block:: python results = vector_store.similarity_search_with_score(query="qux",k=1) for doc, score in results: print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]") .. code-block:: python * [SIM=0.916096] foo [{'_id': '1', 'baz': 'bar'}] Async: .. code-block:: python # add documents # await vector_store.aadd_documents(documents=documents, ids=ids) # delete documents # await vector_store.adelete(ids=["3"]) # search # results = vector_store.asimilarity_search(query="thud",k=1) # search with score results = await vector_store.asimilarity_search_with_score(query="qux",k=1) for doc,score in results: print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]") .. code-block:: python * [SIM=0.916096] foo [{'_id': '1', 'baz': 'bar'}] Use as Retriever: .. code-block:: python retriever = vector_store.as_retriever( search_type="mmr", search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5}, ) retriever.invoke("thud") .. code-block:: python [Document(metadata={'_id': '2', 'embedding': [-0.01850726455450058, -0.0014740974875167012, -0.009762819856405258, ...], 'baz': 'baz'}, page_content='thud')] """ # noqa: E501
[docs] def __init__( self, collection: Collection[Dict[str, Any]], embedding: Embeddings, index_name: str = "vector_index", text_key: str = "text", embedding_key: str = "embedding", relevance_score_fn: str = "cosine", **kwargs: Any, ): """ Args: collection: MongoDB collection to add the texts to embedding: Text embedding model to use text_key: MongoDB field that will contain the text for each document index_name: Existing Atlas Vector Search Index embedding_key: Field that will contain the embedding for each document vector_index_name: Name of the Atlas Vector Search index relevance_score_fn: The similarity score used for the index Currently supported: 'euclidean', 'cosine', and 'dotProduct' """ self._collection = collection self._embedding = embedding self._index_name = index_name self._text_key = text_key self._embedding_key = embedding_key self._relevance_score_fn = relevance_score_fn
@property def embeddings(self) -> Embeddings: return self._embedding def _select_relevance_score_fn(self) -> Callable[[float], float]: scoring: dict[str, Callable] = { "euclidean": self._euclidean_relevance_score_fn, "dotProduct": self._max_inner_product_relevance_score_fn, "cosine": self._cosine_relevance_score_fn, } if self._relevance_score_fn in scoring: return scoring[self._relevance_score_fn] else: raise NotImplementedError( f"No relevance score function for ${self._relevance_score_fn}" )
[docs] @classmethod def from_connection_string( cls, connection_string: str, namespace: str, embedding: Embeddings, **kwargs: Any, ) -> MongoDBAtlasVectorSearch: """Construct a `MongoDB Atlas Vector Search` vector store from a MongoDB connection URI. Args: connection_string: A valid MongoDB connection URI. namespace: A valid MongoDB namespace (database and collection). embedding: The text embedding model to use for the vector store. Returns: A new MongoDBAtlasVectorSearch instance. """ client: MongoClient = MongoClient( connection_string, driver=DriverInfo(name="Langchain", version=version("langchain")), ) db_name, collection_name = namespace.split(".") collection = client[db_name][collection_name] return cls(collection, embedding, **kwargs)
[docs] def add_texts( self, texts: Iterable[str], metadatas: Optional[List[Dict[str, Any]]] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> List[str]: """Add texts, create embeddings, and add to the Collection and index. Important notes on ids: - If _id or id is a key in the metadatas dicts, one must pop them and provide as separate list. - They must be unique. - If they are not provided, the VectorStore will create unique ones, stored as bson.ObjectIds internally, and strings in Langchain. These will appear in Document.metadata with key, '_id'. Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of unique ids that will be used as index in VectorStore. See note on ids. Returns: List of ids added to the vectorstore. """ # Check to see if metadata includes ids if metadatas is not None and ( metadatas[0].get("_id") or metadatas[0].get("id") ): logger.warning( "_id or id key found in metadata. " "Please pop from each dict and input as separate list." "Retrieving methods will include the same id as '_id' in metadata." ) texts_batch = texts _metadatas: Union[List, Generator] = metadatas or ({} for _ in texts) metadatas_batch = _metadatas result_ids = [] batch_size = kwargs.get("batch_size", DEFAULT_INSERT_BATCH_SIZE) if batch_size: texts_batch = [] metadatas_batch = [] size = 0 i = 0 for j, (text, metadata) in enumerate(zip(texts, _metadatas)): size += len(text) + len(metadata) texts_batch.append(text) metadatas_batch.append(metadata) if (j + 1) % batch_size == 0 or size >= 47_000_000: if ids: batch_res = self.bulk_embed_and_insert_texts( texts_batch, metadatas_batch, ids[i : j + 1] ) else: batch_res = self.bulk_embed_and_insert_texts( texts_batch, metadatas_batch ) result_ids.extend(batch_res) texts_batch = [] metadatas_batch = [] size = 0 i = j + 1 if texts_batch: if ids: batch_res = self.bulk_embed_and_insert_texts( texts_batch, metadatas_batch, ids[i : j + 1] ) else: batch_res = self.bulk_embed_and_insert_texts( texts_batch, metadatas_batch ) result_ids.extend(batch_res) return result_ids
[docs] def bulk_embed_and_insert_texts( self, texts: Union[List[str], Iterable[str]], metadatas: Union[List[dict], Generator[dict, Any, Any]], ids: Optional[List[str]] = None, ) -> List[str]: """Bulk insert single batch of texts, embeddings, and optionally ids. See add_texts for additional details. """ if not texts: return [] # Compute embedding vectors embeddings = self._embedding.embed_documents(texts) # type: ignore if ids: to_insert = [ { "_id": str_to_oid(i), self._text_key: t, self._embedding_key: embedding, **m, } for i, t, m, embedding in zip(ids, texts, metadatas, embeddings) ] else: to_insert = [ {self._text_key: t, self._embedding_key: embedding, **m} for t, m, embedding in zip(texts, metadatas, embeddings) ] # insert the documents in MongoDB Atlas insert_result = self._collection.insert_many(to_insert) # type: ignore return [oid_to_str(_id) for _id in insert_result.inserted_ids]
[docs] def add_documents( self, documents: List[Document], ids: Optional[List[str]] = None, batch_size: int = DEFAULT_INSERT_BATCH_SIZE, **kwargs: Any, ) -> List[str]: """Add documents to the vectorstore. Args: documents: Documents to add to the vectorstore. ids: Optional list of unique ids that will be used as index in VectorStore. See note on ids in add_texts. batch_size: Number of documents to insert at a time. Tuning this may help with performance and sidestep MongoDB limits. Returns: List of IDs of the added texts. """ n_docs = len(documents) if ids: assert len(ids) == n_docs, "Number of ids must equal number of documents." result_ids = [] start = 0 for end in range(batch_size, n_docs + batch_size, batch_size): texts, metadatas = zip( *[(doc.page_content, doc.metadata) for doc in documents[start:end]] ) if ids: result_ids.extend( self.bulk_embed_and_insert_texts( texts=texts, metadatas=metadatas, ids=ids[start:end] ) ) else: result_ids.extend( self.bulk_embed_and_insert_texts(texts=texts, metadatas=metadatas) ) start = end return result_ids
[docs] def similarity_search_with_score( self, query: str, k: int = 4, pre_filter: Optional[Dict[str, Any]] = None, post_filter_pipeline: Optional[List[Dict]] = None, oversampling_factor: int = 10, include_embeddings: bool = False, **kwargs: Any, ) -> List[Tuple[Document, float]]: # noqa: E501 """Return MongoDB documents most similar to the given query and their scores. Atlas Vector Search eliminates the need to run a separate search system alongside your database. Args: query: Input text of semantic query k: Number of documents to return. Also known as top_k. pre_filter: List of MQL match expressions comparing an indexed field post_filter_pipeline: (Optional) Arbitrary pipeline of MongoDB aggregation stages applied after the search is complete. oversampling_factor: This times k is the number of candidates chosen at each step in the in HNSW Vector Search include_embeddings: If True, the embedding vector of each result will be included in metadata. kwargs: Additional arguments are specific to the search_type Returns: List of documents most similar to the query and their scores. """ embedding = self._embedding.embed_query(query) docs = self._similarity_search_with_score( embedding, k=k, pre_filter=pre_filter, post_filter_pipeline=post_filter_pipeline, oversampling_factor=oversampling_factor, include_embeddings=include_embeddings, **kwargs, ) return docs
[docs] @classmethod def from_texts( cls, texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict]] = None, collection: Optional[Collection] = None, ids: Optional[List[str]] = None, **kwargs: Any, ) -> MongoDBAtlasVectorSearch: """Construct a `MongoDB Atlas Vector Search` vector store from raw documents. This is a user-friendly interface that: 1. Embeds documents. 2. Adds the documents to a provided MongoDB Atlas Vector Search index (Lucene) This is intended to be a quick way to get started. See `MongoDBAtlasVectorSearch` for kwargs and further description. Example: .. code-block:: python from pymongo import MongoClient from langchain_mongodb import MongoDBAtlasVectorSearch from langchain_openai import OpenAIEmbeddings mongo_client = MongoClient("<YOUR-CONNECTION-STRING>") collection = mongo_client["<db_name>"]["<collection_name>"] embeddings = OpenAIEmbeddings() vectorstore = MongoDBAtlasVectorSearch.from_texts( texts, embeddings, metadatas=metadatas, collection=collection ) """ if collection is None: raise ValueError("Must provide 'collection' named parameter.") vectorstore = cls(collection, embedding, **kwargs) vectorstore.add_texts(texts=texts, metadatas=metadatas, ids=ids, **kwargs) return vectorstore
[docs] def delete(self, ids: Optional[List[str]] = None, **kwargs: Any) -> Optional[bool]: """Delete documents from VectorStore by ids. Args: ids: List of ids to delete. **kwargs: Other keyword arguments passed to Collection.delete_many() Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ filter = {} if ids: oids = [str_to_oid(i) for i in ids] filter = {"_id": {"$in": oids}} return self._collection.delete_many(filter=filter, **kwargs).acknowledged
[docs] async def adelete( self, ids: Optional[List[str]] = None, **kwargs: Any ) -> Optional[bool]: """Delete by vector ID or other criteria. Args: ids: List of ids to delete. **kwargs: Other keyword arguments that subclasses might use. Returns: Optional[bool]: True if deletion is successful, False otherwise, None if not implemented. """ return await run_in_executor(None, self.delete, ids=ids, **kwargs)
[docs] def max_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, pre_filter: Optional[Dict[str, Any]] = None, post_filter_pipeline: Optional[List[Dict]] = None, oversampling_factor: int = 10, **kwargs: Any, ) -> List[Document]: # type: ignore """Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Args: embedding: Embedding to look up documents similar to. k: Number of Documents to return. Defaults to 4. fetch_k: Number of Documents to fetch to pass to MMR algorithm. lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. pre_filter: (Optional) dictionary of arguments to filter document fields on. post_filter_pipeline: (Optional) pipeline of MongoDB aggregation stages following the vectorSearch stage. oversampling_factor: Multiple of k used when generating number of candidates in HNSW Vector Search, kwargs: Additional arguments are specific to the search_type Returns: List of Documents selected by maximal marginal relevance. """ docs = self._similarity_search_with_score( embedding, k=fetch_k, pre_filter=pre_filter, post_filter_pipeline=post_filter_pipeline, include_embeddings=True, oversampling_factor=oversampling_factor, **kwargs, ) mmr_doc_indexes = maximal_marginal_relevance( np.array(embedding), [doc.metadata[self._embedding_key] for doc, _ in docs], k=k, lambda_mult=lambda_mult, ) mmr_docs = [docs[i][0] for i in mmr_doc_indexes] return mmr_docs
[docs] async def amax_marginal_relevance_search_by_vector( self, embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, pre_filter: Optional[Dict[str, Any]] = None, post_filter_pipeline: Optional[List[Dict]] = None, oversampling_factor: int = 10, **kwargs: Any, ) -> List[Document]: """Return docs selected using the maximal marginal relevance.""" return await run_in_executor( None, self.max_marginal_relevance_search_by_vector, # type: ignore[arg-type] embedding, k=k, fetch_k=fetch_k, lambda_mult=lambda_mult, pre_filter=pre_filter, post_filter_pipeline=post_filter_pipeline, oversampling_factor=oversampling_factor, **kwargs, )
def _similarity_search_with_score( self, query_vector: List[float], k: int = 4, pre_filter: Optional[Dict[str, Any]] = None, post_filter_pipeline: Optional[List[Dict]] = None, oversampling_factor: int = 10, include_embeddings: bool = False, **kwargs: Any, ) -> List[Tuple[Document, float]]: """Core search routine. See external methods for details.""" # Atlas Vector Search, potentially with filter pipeline = [ vector_search_stage( query_vector, self._embedding_key, self._index_name, k, pre_filter, oversampling_factor, **kwargs, ), {"$set": {"score": {"$meta": "vectorSearchScore"}}}, ] # Remove embeddings unless requested. if not include_embeddings: pipeline.append({"$project": {self._embedding_key: 0}}) # Post-processing if post_filter_pipeline is not None: pipeline.extend(post_filter_pipeline) # Execution cursor = self._collection.aggregate(pipeline) # type: ignore[arg-type] docs = [] # Format for res in cursor: text = res.pop(self._text_key) score = res.pop("score") make_serializable(res) docs.append((Document(page_content=text, metadata=res), score)) return docs
[docs] def create_vector_search_index( self, dimensions: int, filters: Optional[List[str]] = None, update: bool = False, ) -> None: """Creates a MongoDB Atlas vectorSearch index for the VectorStore Note**: This method may fail as it requires a MongoDB Atlas with these `pre-requisites <https://www.mongodb.com/docs/atlas/atlas-vector-search/create-index/#prerequisites>`. Currently, vector and full-text search index operations need to be performed manually on the Atlas UI for shared M0 clusters. Args: dimensions (int): Number of dimensions in embedding filters (Optional[List[Dict[str, str]]], optional): additional filters for index definition. Defaults to None. update (bool, optional): Updates existing vectorSearch index. Defaults to False. """ try: self._collection.database.create_collection(self._collection.name) except CollectionInvalid: pass index_operation = ( update_vector_search_index if update else create_vector_search_index ) index_operation( collection=self._collection, index_name=self._index_name, dimensions=dimensions, path=self._embedding_key, similarity=self._relevance_score_fn, filters=filters or [], ) # type: ignore [operator]