from __future__ import annotations
import logging
from typing import Any, Iterable, List, Optional, Tuple, Union
from uuid import uuid4
import numpy as np
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.vectorstores import VectorStore
logger = logging.getLogger(__name__)
DEFAULT_MILVUS_CONNECTION = {
    "uri": "http://localhost:19530",
}
Matrix = Union[List[List[float]], List[np.ndarray], np.ndarray]
[docs]
def cosine_similarity(X: Matrix, Y: Matrix) -> np.ndarray:
    """Row-wise cosine similarity between two equal-width matrices."""
    if len(X) == 0 or len(Y) == 0:
        return np.array([])
    X = np.array(X)
    Y = np.array(Y)
    if X.shape[1] != Y.shape[1]:
        raise ValueError(
            f"Number of columns in X and Y must be the same. X has shape {X.shape} "
            f"and Y has shape {Y.shape}."
        )
    try:
        import simsimd as simd  # type: ignore
        X = np.array(X, dtype=np.float32)
        Y = np.array(Y, dtype=np.float32)
        Z = 1 - np.array(simd.cdist(X, Y, metric="cosine"))
        return Z
    except ImportError:
        logger.debug(
            "Unable to import simsimd, defaulting to NumPy implementation. If you want "
            "to use simsimd please install with `pip install simsimd`."
        )
        X_norm = np.linalg.norm(X, axis=1)
        Y_norm = np.linalg.norm(Y, axis=1)
        # Ignore divide by zero errors run time warnings as those are handled below.
        with np.errstate(divide="ignore", invalid="ignore"):
            similarity = np.dot(X, Y.T) / np.outer(X_norm, Y_norm)
        similarity[np.isnan(similarity) | np.isinf(similarity)] = 0.0
        return similarity 
[docs]
def maximal_marginal_relevance(
    query_embedding: np.ndarray,
    embedding_list: list,
    lambda_mult: float = 0.5,
    k: int = 4,
) -> List[int]:
    """Calculate maximal marginal relevance.
    Args:
        query_embedding: The query embedding.
        embedding_list: The list of embeddings.
        lambda_mult: The lambda multiplier. Defaults to 0.5.
        k: The number of results to return. Defaults to 4.
    Returns:
        List[int]: The list of indices.
    """
    if min(k, len(embedding_list)) <= 0:
        return []
    if query_embedding.ndim == 1:
        query_embedding = np.expand_dims(query_embedding, axis=0)
    similarity_to_query = cosine_similarity(query_embedding, embedding_list)[0]
    most_similar = int(np.argmax(similarity_to_query))
    idxs = [most_similar]
    selected = np.array([embedding_list[most_similar]])
    while len(idxs) < min(k, len(embedding_list)):
        best_score = -np.inf
        idx_to_add = -1
        similarity_to_selected = cosine_similarity(embedding_list, selected)
        for i, query_score in enumerate(similarity_to_query):
            if i in idxs:
                continue
            redundant_score = max(similarity_to_selected[i])
            equation_score = (
                lambda_mult * query_score - (1 - lambda_mult) * redundant_score
            )
            if equation_score > best_score:
                best_score = equation_score
                idx_to_add = i
        idxs.append(idx_to_add)
        selected = np.append(selected, [embedding_list[idx_to_add]], axis=0)
    return idxs 
[docs]
class Milvus(VectorStore):
    """Milvus vector store integration.
    Setup:
        Install ``langchain_milvus`` package:
        .. code-block:: bash
            pip install -qU  langchain_milvus
    Key init args — indexing params:
        collection_name: str
            Name of the collection.
        collection_description: str
            Description of the collection.
        embedding_function: Embeddings
            Embedding function to use.
    Key init args — client params:
        connection_args: Optional[dict]
            Connection arguments.
    Instantiate:
        .. code-block:: python
            from langchain_milvus import Milvus
            from langchain_openai import OpenAIEmbeddings
            URI = "./milvus_example.db"
            vector_store = Milvus(
                embedding_function=OpenAIEmbeddings(),
                connection_args={"uri": URI},
            )
    Add Documents:
        .. code-block:: python
            from langchain_core.documents import Document
            document_1 = Document(page_content="foo", metadata={"baz": "bar"})
            document_2 = Document(page_content="thud", metadata={"baz": "baz"})
            document_3 = Document(page_content="i will be deleted :(", metadata={"baz": "qux"})
            documents = [document_1, document_2, document_3]
            ids = ["1", "2", "3"]
            vector_store.add_documents(documents=documents, ids=ids)
    Delete Documents:
        .. code-block:: python
            vector_store.delete(ids=["3"])
    Search:
        .. code-block:: python
            results = vector_store.similarity_search(query="thud",k=1)
            for doc in results:
                print(f"* {doc.page_content} [{doc.metadata}]")
        .. code-block:: python
            * thud [{'baz': 'baz', 'pk': '2'}]
    Search with filter:
        .. code-block:: python
            results = vector_store.similarity_search(query="thud",k=1,filter={"bar": "baz"})
            for doc in results:
                print(f"* {doc.page_content} [{doc.metadata}]")
        .. code-block:: python
            * thud [{'baz': 'baz', 'pk': '2'}]
    Search with score:
        .. code-block:: python
            results = vector_store.similarity_search_with_score(query="qux",k=1)
            for doc, score in results:
                print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
        .. code-block:: python
            * [SIM=0.335463] foo [{'baz': 'bar', 'pk': '1'}]
    Async:
        .. code-block:: python
            # add documents
            # await vector_store.aadd_documents(documents=documents, ids=ids)
            # delete documents
            # await vector_store.adelete(ids=["3"])
            # search
            # results = vector_store.asimilarity_search(query="thud",k=1)
            # search with score
            results = await vector_store.asimilarity_search_with_score(query="qux",k=1)
            for doc,score in results:
                print(f"* [SIM={score:3f}] {doc.page_content} [{doc.metadata}]")
        .. code-block:: python
            * [SIM=0.335463] foo [{'baz': 'bar', 'pk': '1'}]
    Use as Retriever:
        .. code-block:: python
            retriever = vector_store.as_retriever(
                search_type="mmr",
                search_kwargs={"k": 1, "fetch_k": 2, "lambda_mult": 0.5},
            )
            retriever.invoke("thud")
        .. code-block:: python
            [Document(metadata={'baz': 'baz', 'pk': '2'}, page_content='thud')]
    """  # noqa: E501
[docs]
    def __init__(
        self,
        embedding_function: Embeddings,
        collection_name: str = "LangChainCollection",
        collection_description: str = "",
        collection_properties: Optional[dict[str, Any]] = None,
        connection_args: Optional[dict[str, Any]] = None,
        consistency_level: str = "Session",
        index_params: Optional[dict] = None,
        search_params: Optional[dict] = None,
        drop_old: Optional[bool] = False,
        auto_id: bool = False,
        *,
        primary_field: str = "pk",
        text_field: str = "text",
        vector_field: str = "vector",
        enable_dynamic_field: bool = False,
        metadata_field: Optional[str] = None,
        partition_key_field: Optional[str] = None,
        partition_names: Optional[list] = None,
        replica_number: int = 1,
        timeout: Optional[float] = None,
        num_shards: Optional[int] = None,
    ):
        """Initialize the Milvus vector store."""
        try:
            from pymilvus import Collection, utility
        except ImportError:
            raise ValueError(
                "Could not import pymilvus python package. "
                "Please install it with `pip install pymilvus`."
            )
        # Default search params when one is not provided.
        self.default_search_params = {
            "IVF_FLAT": {"metric_type": "L2", "params": {"nprobe": 10}},
            "IVF_SQ8": {"metric_type": "L2", "params": {"nprobe": 10}},
            "IVF_PQ": {"metric_type": "L2", "params": {"nprobe": 10}},
            "HNSW": {"metric_type": "L2", "params": {"ef": 10}},
            "RHNSW_FLAT": {"metric_type": "L2", "params": {"ef": 10}},
            "RHNSW_SQ": {"metric_type": "L2", "params": {"ef": 10}},
            "RHNSW_PQ": {"metric_type": "L2", "params": {"ef": 10}},
            "IVF_HNSW": {"metric_type": "L2", "params": {"nprobe": 10, "ef": 10}},
            "ANNOY": {"metric_type": "L2", "params": {"search_k": 10}},
            "SCANN": {"metric_type": "L2", "params": {"search_k": 10}},
            "AUTOINDEX": {"metric_type": "L2", "params": {}},
            "GPU_CAGRA": {
                "metric_type": "L2",
                "params": {
                    "itopk_size": 128,
                    "search_width": 4,
                    "min_iterations": 0,
                    "max_iterations": 0,
                    "team_size": 0,
                },
            },
            "GPU_IVF_FLAT": {"metric_type": "L2", "params": {"nprobe": 10}},
            "GPU_IVF_PQ": {"metric_type": "L2", "params": {"nprobe": 10}},
        }
        self.embedding_func = embedding_function
        self.collection_name = collection_name
        self.collection_description = collection_description
        self.collection_properties = collection_properties
        self.index_params = index_params
        self.search_params = search_params
        self.consistency_level = consistency_level
        self.auto_id = auto_id
        # In order for a collection to be compatible, pk needs to be varchar
        self._primary_field = primary_field
        # In order for compatibility, the text field will need to be called "text"
        self._text_field = text_field
        # In order for compatibility, the vector field needs to be called "vector"
        self._vector_field = vector_field
        if metadata_field:
            logger.warning(
                "DeprecationWarning: `metadata_field` is about to be deprecated, "
                "please set `enable_dynamic_field`=True instead."
            )
        if enable_dynamic_field and metadata_field:
            metadata_field = None
            logger.warning(
                "When `enable_dynamic_field` is True, `metadata_field` is ignored."
            )
        self.enable_dynamic_field = enable_dynamic_field
        self._metadata_field = metadata_field
        self._partition_key_field = partition_key_field
        self.fields: list[str] = []
        self.partition_names = partition_names
        self.replica_number = replica_number
        self.timeout = timeout
        self.num_shards = num_shards
        # Create the connection to the server
        if connection_args is None:
            connection_args = DEFAULT_MILVUS_CONNECTION
        self.alias = self._create_connection_alias(connection_args)
        self.col: Optional[Collection] = None
        # Grab the existing collection if it exists
        if utility.has_collection(self.collection_name, using=self.alias):
            self.col = Collection(
                self.collection_name,
                using=self.alias,
            )
            if self.collection_properties is not None:
                self.col.set_properties(self.collection_properties)
        # If need to drop old, drop it
        if drop_old and isinstance(self.col, Collection):
            self.col.drop()
            self.col = None
        # Initialize the vector store
        self._init(
            partition_names=partition_names,
            replica_number=replica_number,
            timeout=timeout,
        ) 
    @property
    def embeddings(self) -> Embeddings:
        return self.embedding_func
    def _create_connection_alias(self, connection_args: dict) -> str:
        """Create the connection to the Milvus server."""
        from pymilvus import MilvusException, connections
        # Grab the connection arguments that are used for checking existing connection
        host: str = connection_args.get("host", None)
        port: Union[str, int] = connection_args.get("port", None)
        address: str = connection_args.get("address", None)
        uri: str = connection_args.get("uri", None)
        user = connection_args.get("user", None)
        # Order of use is host/port, uri, address
        if host is not None and port is not None:
            given_address = str(host) + ":" + str(port)
        elif uri is not None:
            if uri.startswith("https://"):
                given_address = uri.split("https://")[1]
            elif uri.startswith("http://"):
                given_address = uri.split("http://")[1]
            else:
                given_address = uri  # Milvus lite
        elif address is not None:
            given_address = address
        else:
            given_address = None
            logger.debug("Missing standard address type for reuse attempt")
        # User defaults to empty string when getting connection info
        if user is not None:
            tmp_user = user
        else:
            tmp_user = ""
        # If a valid address was given, then check if a connection exists
        if given_address is not None:
            for con in connections.list_connections():
                addr = connections.get_connection_addr(con[0])
                if (
                    con[1]
                    and ("address" in addr)
                    and (addr["address"] == given_address)
                    and ("user" in addr)
                    and (addr["user"] == tmp_user)
                ):
                    logger.debug("Using previous connection: %s", con[0])
                    return con[0]
        # Generate a new connection if one doesn't exist
        alias = uuid4().hex
        try:
            connections.connect(alias=alias, **connection_args)
            logger.debug("Created new connection using: %s", alias)
            return alias
        except MilvusException as e:
            logger.error("Failed to create new connection using: %s", alias)
            raise e
    def _init(
        self,
        embeddings: Optional[list] = None,
        metadatas: Optional[list[dict]] = None,
        partition_names: Optional[list] = None,
        replica_number: int = 1,
        timeout: Optional[float] = None,
    ) -> None:
        if embeddings is not None:
            self._create_collection(embeddings, metadatas)
        self._extract_fields()
        self._create_index()
        self._create_search_params()
        self._load(
            partition_names=partition_names,
            replica_number=replica_number,
            timeout=timeout,
        )
    def _create_collection(
        self, embeddings: list, metadatas: Optional[list[dict]] = None
    ) -> None:
        from pymilvus import (
            Collection,
            CollectionSchema,
            DataType,
            FieldSchema,
            MilvusException,
        )
        from pymilvus.orm.types import infer_dtype_bydata  # type: ignore
        # Determine embedding dim
        dim = len(embeddings[0])
        fields = []
        # If enable_dynamic_field, we don't need to create fields, and just pass it.
        # In the future, when metadata_field is deprecated,
        # This logical structure will be simplified like this:
        # ```
        # if not self.enable_dynamic_field and metadatas:
        #     for key, value in metadatas[0].items():
        #         ...
        # ```
        if self.enable_dynamic_field:
            # If both dynamic fields and partition key field are enabled
            if self._partition_key_field is not None:
                # create the partition field
                fields.append(
                    FieldSchema(
                        self._partition_key_field, DataType.VARCHAR, max_length=65_535
                    )
                )
        elif self._metadata_field is not None:
            fields.append(FieldSchema(self._metadata_field, DataType.JSON))
        else:
            # Determine metadata schema
            if metadatas:
                # Create FieldSchema for each entry in metadata.
                for key, value in metadatas[0].items():
                    if key in [
                        self._vector_field,
                        self._primary_field,
                        self._text_field,
                    ]:
                        logger.error(
                            (
                                "Failure to create collection, "
                                "metadata key: %s is reserved."
                            ),
                            key,
                        )
                        raise ValueError(f"Metadata key {key} is reserved.")
                    # Infer the corresponding datatype of the metadata
                    dtype = infer_dtype_bydata(value)
                    # Datatype isn't compatible
                    if dtype == DataType.UNKNOWN or dtype == DataType.NONE:
                        logger.error(
                            (
                                "Failure to create collection, "
                                "unrecognized dtype for key: %s"
                            ),
                            key,
                        )
                        raise ValueError(f"Unrecognized datatype for {key}.")
                    # Datatype is a string/varchar equivalent
                    elif dtype == DataType.VARCHAR:
                        fields.append(
                            FieldSchema(key, DataType.VARCHAR, max_length=65_535)
                        )
                    else:
                        fields.append(FieldSchema(key, dtype))
        # Create the text field
        fields.append(
            FieldSchema(self._text_field, DataType.VARCHAR, max_length=65_535)
        )
        # Create the primary key field
        if self.auto_id:
            fields.append(
                FieldSchema(
                    self._primary_field, DataType.INT64, is_primary=True, auto_id=True
                )
            )
        else:
            fields.append(
                FieldSchema(
                    self._primary_field,
                    DataType.VARCHAR,
                    is_primary=True,
                    auto_id=False,
                    max_length=65_535,
                )
            )
        # Create the vector field, supports binary or float vectors
        fields.append(
            FieldSchema(self._vector_field, infer_dtype_bydata(embeddings[0]), dim=dim)
        )
        # Create the schema for the collection
        schema = CollectionSchema(
            fields,
            description=self.collection_description,
            partition_key_field=self._partition_key_field,
            enable_dynamic_field=self.enable_dynamic_field,
        )
        # Create the collection
        try:
            if self.num_shards is not None:
                # Issue with defaults:
                # https://github.com/milvus-io/pymilvus/blob/59bf5e811ad56e20946559317fed855330758d9c/pymilvus/client/prepare.py#L82-L85
                self.col = Collection(
                    name=self.collection_name,
                    schema=schema,
                    consistency_level=self.consistency_level,
                    using=self.alias,
                    num_shards=self.num_shards,
                )
            else:
                self.col = Collection(
                    name=self.collection_name,
                    schema=schema,
                    consistency_level=self.consistency_level,
                    using=self.alias,
                )
            # Set the collection properties if they exist
            if self.collection_properties is not None:
                self.col.set_properties(self.collection_properties)
        except MilvusException as e:
            logger.error(
                "Failed to create collection: %s error: %s", self.collection_name, e
            )
            raise e
    def _extract_fields(self) -> None:
        """Grab the existing fields from the Collection"""
        from pymilvus import Collection
        if isinstance(self.col, Collection):
            schema = self.col.schema
            for x in schema.fields:
                self.fields.append(x.name)
    def _get_index(self) -> Optional[dict[str, Any]]:
        """Return the vector index information if it exists"""
        from pymilvus import Collection
        if isinstance(self.col, Collection):
            for x in self.col.indexes:
                if x.field_name == self._vector_field:
                    return x.to_dict()
        return None
    def _create_index(self) -> None:
        """Create a index on the collection"""
        from pymilvus import Collection, MilvusException
        if isinstance(self.col, Collection) and self._get_index() is None:
            try:
                # If no index params, use a default HNSW based one
                if self.index_params is None:
                    self.index_params = {
                        "metric_type": "L2",
                        "index_type": "HNSW",
                        "params": {"M": 8, "efConstruction": 64},
                    }
                try:
                    self.col.create_index(
                        self._vector_field,
                        index_params=self.index_params,
                        using=self.alias,
                    )
                # If default did not work, most likely on Zilliz Cloud
                except MilvusException:
                    # Use AUTOINDEX based index
                    self.index_params = {
                        "metric_type": "L2",
                        "index_type": "AUTOINDEX",
                        "params": {},
                    }
                    self.col.create_index(
                        self._vector_field,
                        index_params=self.index_params,
                        using=self.alias,
                    )
                logger.debug(
                    "Successfully created an index on collection: %s",
                    self.collection_name,
                )
            except MilvusException as e:
                logger.error(
                    "Failed to create an index on collection: %s", self.collection_name
                )
                raise e
    def _create_search_params(self) -> None:
        """Generate search params based on the current index type"""
        from pymilvus import Collection
        if isinstance(self.col, Collection) and self.search_params is None:
            index = self._get_index()
            if index is not None:
                index_type: str = index["index_param"]["index_type"]
                metric_type: str = index["index_param"]["metric_type"]
                self.search_params = self.default_search_params[index_type]
                self.search_params["metric_type"] = metric_type
    def _load(
        self,
        partition_names: Optional[list] = None,
        replica_number: int = 1,
        timeout: Optional[float] = None,
    ) -> None:
        """Load the collection if available."""
        from pymilvus import Collection, utility
        from pymilvus.client.types import LoadState  # type: ignore
        timeout = self.timeout or timeout
        if (
            isinstance(self.col, Collection)
            and self._get_index() is not None
            and utility.load_state(self.collection_name, using=self.alias)
            == LoadState.NotLoad
        ):
            self.col.load(
                partition_names=partition_names,
                replica_number=replica_number,
                timeout=timeout,
            )
[docs]
    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        timeout: Optional[float] = None,
        batch_size: int = 1000,
        *,
        ids: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> List[str]:
        """Insert text data into Milvus.
        Inserting data when the collection has not be made yet will result
        in creating a new Collection. The data of the first entity decides
        the schema of the new collection, the dim is extracted from the first
        embedding and the columns are decided by the first metadata dict.
        Metadata keys will need to be present for all inserted values. At
        the moment there is no None equivalent in Milvus.
        Args:
            texts (Iterable[str]): The texts to embed, it is assumed
                that they all fit in memory.
            metadatas (Optional[List[dict]]): Metadata dicts attached to each of
                the texts. Defaults to None.
            should be less than 65535 bytes. Required and work when auto_id is False.
            timeout (Optional[float]): Timeout for each batch insert. Defaults
                to None.
            batch_size (int, optional): Batch size to use for insertion.
                Defaults to 1000.
            ids (Optional[List[str]]): List of text ids. The length of each item
        Raises:
            MilvusException: Failure to add texts
        Returns:
            List[str]: The resulting keys for each inserted element.
        """
        from pymilvus import Collection, MilvusException
        texts = list(texts)
        if not self.auto_id:
            assert isinstance(ids, list), (
                "A list of valid ids are required when auto_id is False. "
                "You can set `auto_id` to True in this Milvus instance to generate "
                "ids automatically, or specify string-type ids for each text."
            )
            assert len(set(ids)) == len(
                texts
            ), "Different lengths of texts and unique ids are provided."
            assert all(isinstance(x, str) for x in ids), "All ids should be strings."
            assert all(
                len(x.encode()) <= 65_535 for x in ids
            ), "Each id should be a string less than 65535 bytes."
        else:
            if ids is not None:
                logger.warning(
                    "The ids parameter is ignored when auto_id is True. "
                    "The ids will be generated automatically."
                )
        try:
            embeddings = self.embedding_func.embed_documents(texts)
        except NotImplementedError:
            embeddings = [self.embedding_func.embed_query(x) for x in texts]
        if len(embeddings) == 0:
            logger.debug("Nothing to insert, skipping.")
            return []
        # If the collection hasn't been initialized yet, perform all steps to do so
        if not isinstance(self.col, Collection):
            kwargs = {"embeddings": embeddings, "metadatas": metadatas}
            if self.partition_names:
                kwargs["partition_names"] = self.partition_names
            if self.replica_number:
                kwargs["replica_number"] = self.replica_number
            if self.timeout:
                kwargs["timeout"] = self.timeout
            self._init(**kwargs)
        insert_list: list[dict] = []
        assert len(texts) == len(
            embeddings
        ), "Mismatched lengths of texts and embeddings."
        if metadatas is not None:
            assert len(texts) == len(
                metadatas
            ), "Mismatched lengths of texts and metadatas."
        for i, text, embedding in zip(range(len(texts)), texts, embeddings):
            entity_dict = {}
            metadata = metadatas[i] if metadatas else {}
            if not self.auto_id:
                entity_dict[self._primary_field] = ids[i]  # type: ignore[index]
            entity_dict[self._text_field] = text
            entity_dict[self._vector_field] = embedding
            if self._metadata_field and not self.enable_dynamic_field:
                entity_dict[self._metadata_field] = metadata
            else:
                for key, value in metadata.items():
                    # if not enable_dynamic_field, skip fields not in the collection.
                    if not self.enable_dynamic_field and key not in self.fields:
                        continue
                    # If enable_dynamic_field, all fields are allowed.
                    entity_dict[key] = value
            insert_list.append(entity_dict)
        # Total insert count
        total_count = len(insert_list)
        pks: list[str] = []
        assert isinstance(self.col, Collection)
        for i in range(0, total_count, batch_size):
            # Grab end index
            end = min(i + batch_size, total_count)
            batch_insert_list = insert_list[i:end]
            # Insert into the collection.
            try:
                res: Collection
                timeout = self.timeout or timeout
                res = self.col.insert(batch_insert_list, timeout=timeout, **kwargs)
                pks.extend(res.primary_keys)
            except MilvusException as e:
                logger.error(
                    "Failed to insert batch starting at entity: %s/%s", i, total_count
                )
                raise e
        return pks 
    def _collection_search(
        self,
        embedding: List[float],
        k: int = 4,
        param: Optional[dict] = None,
        expr: Optional[str] = None,
        timeout: Optional[float] = None,
        **kwargs: Any,
    ) -> "pymilvus.client.abstract.SearchResult | None":  # type: ignore[name-defined] # noqa: F821
        """Perform a search on an embedding and return milvus search results.
        For more information about the search parameters, take a look at the pymilvus
        documentation found here:
        https://milvus.io/api-reference/pymilvus/v2.4.x/ORM/Collection/search.md
        Args:
            embedding (List[float]): The embedding vector being searched.
            k (int, optional): The amount of results to return. Defaults to 4.
            param (dict): The search params for the specified index.
                Defaults to None.
            expr (str, optional): Filtering expression. Defaults to None.
            timeout (float, optional): How long to wait before timeout error.
                Defaults to None.
            kwargs: Collection.search() keyword arguments.
        Returns:
            pymilvus.client.abstract.SearchResult: Milvus search result.
        """
        if self.col is None:
            logger.debug("No existing collection to search.")
            return None
        if param is None:
            param = self.search_params
        # Determine result metadata fields with PK.
        if self.enable_dynamic_field:
            output_fields = ["*"]
        else:
            output_fields = self.fields[:]
            output_fields.remove(self._vector_field)
        timeout = self.timeout or timeout
        # Perform the search.
        res = self.col.search(
            data=[embedding],
            anns_field=self._vector_field,
            param=param,
            limit=k,
            expr=expr,
            output_fields=output_fields,
            timeout=timeout,
            **kwargs,
        )
        return res
[docs]
    def similarity_search(
        self,
        query: str,
        k: int = 4,
        param: Optional[dict] = None,
        expr: Optional[str] = None,
        timeout: Optional[float] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Perform a similarity search against the query string.
        Args:
            query (str): The text to search.
            k (int, optional): How many results to return. Defaults to 4.
            param (dict, optional): The search params for the index type.
                Defaults to None.
            expr (str, optional): Filtering expression. Defaults to None.
            timeout (int, optional): How long to wait before timeout error.
                Defaults to None.
            kwargs: Collection.search() keyword arguments.
        Returns:
            List[Document]: Document results for search.
        """
        if self.col is None:
            logger.debug("No existing collection to search.")
            return []
        timeout = self.timeout or timeout
        res = self.similarity_search_with_score(
            query=query, k=k, param=param, expr=expr, timeout=timeout, **kwargs
        )
        return [doc for doc, _ in res] 
[docs]
    def similarity_search_by_vector(
        self,
        embedding: List[float],
        k: int = 4,
        param: Optional[dict] = None,
        expr: Optional[str] = None,
        timeout: Optional[float] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Perform a similarity search against the query string.
        Args:
            embedding (List[float]): The embedding vector to search.
            k (int, optional): How many results to return. Defaults to 4.
            param (dict, optional): The search params for the index type.
                Defaults to None.
            expr (str, optional): Filtering expression. Defaults to None.
            timeout (int, optional): How long to wait before timeout error.
                Defaults to None.
            kwargs: Collection.search() keyword arguments.
        Returns:
            List[Document]: Document results for search.
        """
        if self.col is None:
            logger.debug("No existing collection to search.")
            return []
        timeout = self.timeout or timeout
        res = self.similarity_search_with_score_by_vector(
            embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs
        )
        return [doc for doc, _ in res] 
[docs]
    def similarity_search_with_score(
        self,
        query: str,
        k: int = 4,
        param: Optional[dict] = None,
        expr: Optional[str] = None,
        timeout: Optional[float] = None,
        **kwargs: Any,
    ) -> List[Tuple[Document, float]]:
        """Perform a search on a query string and return results with score.
        For more information about the search parameters, take a look at the pymilvus
        documentation found here:
        https://milvus.io/api-reference/pymilvus/v2.4.x/ORM/Collection/search.md
        Args:
            query (str): The text being searched.
            k (int, optional): The amount of results to return. Defaults to 4.
            param (dict): The search params for the specified index.
                Defaults to None.
            expr (str, optional): Filtering expression. Defaults to None.
            timeout (float, optional): How long to wait before timeout error.
                Defaults to None.
            kwargs: Collection.search() keyword arguments.
        Returns:
            List[float], List[Tuple[Document, any, any]]:
        """
        if self.col is None:
            logger.debug("No existing collection to search.")
            return []
        # Embed the query text.
        embedding = self.embedding_func.embed_query(query)
        timeout = self.timeout or timeout
        res = self.similarity_search_with_score_by_vector(
            embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs
        )
        return res 
[docs]
    def similarity_search_with_score_by_vector(
        self,
        embedding: List[float],
        k: int = 4,
        param: Optional[dict] = None,
        expr: Optional[str] = None,
        timeout: Optional[float] = None,
        **kwargs: Any,
    ) -> List[Tuple[Document, float]]:
        """Perform a search on an embedding and return results with score.
        For more information about the search parameters, take a look at the pymilvus
        documentation found here:
        https://milvus.io/api-reference/pymilvus/v2.4.x/ORM/Collection/search.md
        Args:
            embedding (List[float]): The embedding vector being searched.
            k (int, optional): The amount of results to return. Defaults to 4.
            param (dict): The search params for the specified index.
                Defaults to None.
            expr (str, optional): Filtering expression. Defaults to None.
            timeout (float, optional): How long to wait before timeout error.
                Defaults to None.
            kwargs: Collection.search() keyword arguments.
        Returns:
            List[Tuple[Document, float]]: Result doc and score.
        """
        col_search_res = self._collection_search(
            embedding=embedding, k=k, param=param, expr=expr, timeout=timeout, **kwargs
        )
        if col_search_res is None:
            return []
        ret = []
        for result in col_search_res[0]:
            data = {x: result.entity.get(x) for x in result.entity.fields}
            doc = self._parse_document(data)
            pair = (doc, result.score)
            ret.append(pair)
        return ret 
[docs]
    def max_marginal_relevance_search(
        self,
        query: str,
        k: int = 4,
        fetch_k: int = 20,
        lambda_mult: float = 0.5,
        param: Optional[dict] = None,
        expr: Optional[str] = None,
        timeout: Optional[float] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Perform a search and return results that are reordered by MMR.
        Args:
            query (str): The text being searched.
            k (int, optional): How many results to give. Defaults to 4.
            fetch_k (int, optional): Total results to select k from.
                Defaults to 20.
            lambda_mult: Number between 0 and 1 that determines the degree
                        of diversity among the results with 0 corresponding
                        to maximum diversity and 1 to minimum diversity.
                        Defaults to 0.5
            param (dict, optional): The search params for the specified index.
                Defaults to None.
            expr (str, optional): Filtering expression. Defaults to None.
            timeout (float, optional): How long to wait before timeout error.
                Defaults to None.
            kwargs: Collection.search() keyword arguments.
        Returns:
            List[Document]: Document results for search.
        """
        if self.col is None:
            logger.debug("No existing collection to search.")
            return []
        embedding = self.embedding_func.embed_query(query)
        timeout = self.timeout or timeout
        return self.max_marginal_relevance_search_by_vector(
            embedding=embedding,
            k=k,
            fetch_k=fetch_k,
            lambda_mult=lambda_mult,
            param=param,
            expr=expr,
            timeout=timeout,
            **kwargs,
        ) 
[docs]
    def max_marginal_relevance_search_by_vector(
        self,
        embedding: list[float],
        k: int = 4,
        fetch_k: int = 20,
        lambda_mult: float = 0.5,
        param: Optional[dict] = None,
        expr: Optional[str] = None,
        timeout: Optional[float] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Perform a search and return results that are reordered by MMR.
        Args:
            embedding (str): The embedding vector being searched.
            k (int, optional): How many results to give. Defaults to 4.
            fetch_k (int, optional): Total results to select k from.
                Defaults to 20.
            lambda_mult: Number between 0 and 1 that determines the degree
                        of diversity among the results with 0 corresponding
                        to maximum diversity and 1 to minimum diversity.
                        Defaults to 0.5
            param (dict, optional): The search params for the specified index.
                Defaults to None.
            expr (str, optional): Filtering expression. Defaults to None.
            timeout (float, optional): How long to wait before timeout error.
                Defaults to None.
            kwargs: Collection.search() keyword arguments.
        Returns:
            List[Document]: Document results for search.
        """
        col_search_res = self._collection_search(
            embedding=embedding,
            k=fetch_k,
            param=param,
            expr=expr,
            timeout=timeout,
            **kwargs,
        )
        if col_search_res is None:
            return []
        ids = []
        documents = []
        scores = []
        for result in col_search_res[0]:
            data = {x: result.entity.get(x) for x in result.entity.fields}
            doc = self._parse_document(data)
            documents.append(doc)
            scores.append(result.score)
            ids.append(result.id)
        vectors = self.col.query(  # type: ignore[union-attr]
            expr=f"{self._primary_field} in {ids}",
            output_fields=[self._primary_field, self._vector_field],
            timeout=timeout,
        )
        # Reorganize the results from query to match search order.
        vectors = {x[self._primary_field]: x[self._vector_field] for x in vectors}
        ordered_result_embeddings = [vectors[x] for x in ids]
        # Get the new order of results.
        new_ordering = maximal_marginal_relevance(
            np.array(embedding), ordered_result_embeddings, k=k, lambda_mult=lambda_mult
        )
        # Reorder the values and return.
        ret = []
        for x in new_ordering:
            # Function can return -1 index
            if x == -1:
                break
            else:
                ret.append(documents[x])
        return ret 
[docs]
    def delete(  # type: ignore[no-untyped-def]
        self, ids: Optional[List[str]] = None, expr: Optional[str] = None, **kwargs: str
    ):
        """Delete by vector ID or boolean expression.
        Refer to [Milvus documentation](https://milvus.io/docs/delete_data.md)
        for notes and examples of expressions.
        Args:
            ids: List of ids to delete.
            expr: Boolean expression that specifies the entities to delete.
            kwargs: Other parameters in Milvus delete api.
        """
        if isinstance(ids, list) and len(ids) > 0:
            if expr is not None:
                logger.warning(
                    "Both ids and expr are provided. " "Ignore expr and delete by ids."
                )
            expr = f"{self._primary_field} in {ids}"
        else:
            assert isinstance(
                expr, str
            ), "Either ids list or expr string must be provided."
        return self.col.delete(expr=expr, **kwargs)  # type: ignore[union-attr] 
[docs]
    @classmethod
    def from_texts(
        cls,
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        collection_name: str = "LangChainCollection",
        connection_args: dict[str, Any] = DEFAULT_MILVUS_CONNECTION,
        consistency_level: str = "Session",
        index_params: Optional[dict] = None,
        search_params: Optional[dict] = None,
        drop_old: bool = False,
        *,
        ids: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> Milvus:
        """Create a Milvus collection, indexes it with HNSW, and insert data.
        Args:
            texts (List[str]): Text data.
            embedding (Embeddings): Embedding function.
            metadatas (Optional[List[dict]]): Metadata for each text if it exists.
                Defaults to None.
            collection_name (str, optional): Collection name to use. Defaults to
                "LangChainCollection".
            connection_args (dict[str, Any], optional): Connection args to use. Defaults
                to DEFAULT_MILVUS_CONNECTION.
            consistency_level (str, optional): Which consistency level to use. Defaults
                to "Session".
            index_params (Optional[dict], optional): Which index_params to use. Defaults
                to None.
            search_params (Optional[dict], optional): Which search params to use.
                Defaults to None.
            drop_old (Optional[bool], optional): Whether to drop the collection with
                that name if it exists. Defaults to False.
            ids (Optional[List[str]]): List of text ids. Defaults to None.
        Returns:
            Milvus: Milvus Vector Store
        """
        if isinstance(ids, list) and len(ids) > 0:
            auto_id = False
        else:
            auto_id = True
        vector_db = cls(
            embedding_function=embedding,
            collection_name=collection_name,
            connection_args=connection_args,
            consistency_level=consistency_level,
            index_params=index_params,
            search_params=search_params,
            drop_old=drop_old,
            auto_id=auto_id,
            **kwargs,
        )
        vector_db.add_texts(texts=texts, metadatas=metadatas, ids=ids)
        return vector_db 
    def _parse_document(self, data: dict) -> Document:
        if self._vector_field in data:
            data.pop(self._vector_field)
        return Document(
            page_content=data.pop(self._text_field),
            metadata=data.pop(self._metadata_field) if self._metadata_field else data,
        )
[docs]
    def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
        """Run more documents through the embeddings and add to the vectorstore.
        Args:
            documents: Documents to add to the vectorstore.
        Returns:
            List of IDs of the added texts.
        """
        # TODO: Handle the case where the user doesn't provide ids on the Collection
        texts = [doc.page_content for doc in documents]
        metadatas = [doc.metadata for doc in documents]
        return self.add_texts(texts, metadatas, **kwargs) 
[docs]
    async def aadd_documents(
        self, documents: List[Document], **kwargs: Any
    ) -> List[str]:
        """Run more documents through the embeddings and add to the vectorstore.
        Args:
            documents: Documents to add to the vectorstore.
        Returns:
            List of IDs of the added texts.
        """
        texts = [doc.page_content for doc in documents]
        metadatas = [doc.metadata for doc in documents]
        return await self.aadd_texts(texts, metadatas, **kwargs) 
[docs]
    def get_pks(self, expr: str, **kwargs: Any) -> List[int] | None:
        """Get primary keys with expression
        Args:
            expr: Expression - E.g: "id in [1, 2]", or "title LIKE 'Abc%'"
        Returns:
            List[int]: List of IDs (Primary Keys)
        """
        from pymilvus import MilvusException
        if self.col is None:
            logger.debug("No existing collection to get pk.")
            return None
        try:
            query_result = self.col.query(
                expr=expr, output_fields=[self._primary_field]
            )
        except MilvusException as exc:
            logger.error("Failed to get ids: %s error: %s", self.collection_name, exc)
            raise exc
        pks = [item.get(self._primary_field) for item in query_result]
        return pks 
[docs]
    def upsert(  # type: ignore
        self,
        ids: Optional[List[str]] = None,
        documents: List[Document] | None = None,
        **kwargs: Any,
    ) -> List[str] | None:
        """Update/Insert documents to the vectorstore.
        Args:
            ids: IDs to update - Let's call get_pks to get ids with expression \n
            documents (List[Document]): Documents to add to the vectorstore.
        Returns:
            List[str]: IDs of the added texts.
        """
        from pymilvus import MilvusException
        if documents is None or len(documents) == 0:
            logger.debug("No documents to upsert.")
            return None
        if ids is not None and len(ids):
            try:
                self.delete(ids=ids)
            except MilvusException:
                pass
        try:
            return self.add_documents(documents=documents, **kwargs)
        except MilvusException as exc:
            logger.error(
                "Failed to upsert entities: %s error: %s", self.collection_name, exc
            )
            raise exc