"""Hugging Face Chat Wrapper."""
from dataclasses import dataclass
from typing import (
Any,
Callable,
Dict,
List,
Literal,
Optional,
Sequence,
Type,
Union,
cast,
)
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import BaseChatModel
from langchain_core.messages import (
AIMessage,
BaseMessage,
ChatMessage,
HumanMessage,
SystemMessage,
ToolMessage,
)
from langchain_core.outputs import ChatGeneration, ChatResult, LLMResult
from langchain_core.pydantic_v1 import root_validator
from langchain_core.runnables import Runnable
from langchain_core.tools import BaseTool
from langchain_core.utils.function_calling import convert_to_openai_tool
from langchain_huggingface.llms.huggingface_endpoint import HuggingFaceEndpoint
from langchain_huggingface.llms.huggingface_pipeline import HuggingFacePipeline
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful, and honest assistant."""
[docs]
@dataclass
class TGI_RESPONSE:
"""Response from the TextGenInference API."""
choices: List[Any]
usage: Dict
[docs]
@dataclass
class TGI_MESSAGE:
"""Message to send to the TextGenInference API."""
role: str
content: str
tool_calls: List[Dict]
def _convert_message_to_chat_message(
message: BaseMessage,
) -> Dict:
if isinstance(message, ChatMessage):
return dict(role=message.role, content=message.content)
elif isinstance(message, HumanMessage):
return dict(role="user", content=message.content)
elif isinstance(message, AIMessage):
if "tool_calls" in message.additional_kwargs:
tool_calls = [
{
"function": {
"name": tc["function"]["name"],
"arguments": tc["function"]["arguments"],
}
}
for tc in message.additional_kwargs["tool_calls"]
]
else:
tool_calls = None
return {
"role": "assistant",
"content": message.content,
"tool_calls": tool_calls,
}
elif isinstance(message, SystemMessage):
return dict(role="system", content=message.content)
elif isinstance(message, ToolMessage):
return {
"role": "tool",
"content": message.content,
"name": message.name,
}
else:
raise ValueError(f"Got unknown type {message}")
def _convert_TGI_message_to_LC_message(
_message: TGI_MESSAGE,
) -> BaseMessage:
role = _message.role
assert role == "assistant", f"Expected role to be 'assistant', got {role}"
content = cast(str, _message.content)
if content is None:
content = ""
additional_kwargs: Dict = {}
if tool_calls := _message.tool_calls:
if "arguments" in tool_calls[0]["function"]:
functions_string = str(tool_calls[0]["function"].pop("arguments"))
corrected_functions = functions_string.replace("'", '"')
tool_calls[0]["function"]["arguments"] = corrected_functions
additional_kwargs["tool_calls"] = tool_calls
return AIMessage(content=content, additional_kwargs=additional_kwargs)
def _is_huggingface_hub(llm: Any) -> bool:
try:
from langchain_community.llms.huggingface_hub import ( # type: ignore[import-not-found]
HuggingFaceHub,
)
return isinstance(llm, HuggingFaceHub)
except ImportError:
# if no langchain community, it is not a HuggingFaceHub
return False
def _is_huggingface_textgen_inference(llm: Any) -> bool:
try:
from langchain_community.llms.huggingface_text_gen_inference import ( # type: ignore[import-not-found]
HuggingFaceTextGenInference,
)
return isinstance(llm, HuggingFaceTextGenInference)
except ImportError:
# if no langchain community, it is not a HuggingFaceTextGenInference
return False
def _is_huggingface_endpoint(llm: Any) -> bool:
return isinstance(llm, HuggingFaceEndpoint)
def _is_huggingface_pipeline(llm: Any) -> bool:
return isinstance(llm, HuggingFacePipeline)
[docs]
class ChatHuggingFace(BaseChatModel):
"""Hugging Face LLM's as ChatModels.
Works with `HuggingFaceTextGenInference`, `HuggingFaceEndpoint`,
`HuggingFaceHub`, and `HuggingFacePipeline` LLMs.
Upon instantiating this class, the model_id is resolved from the url
provided to the LLM, and the appropriate tokenizer is loaded from
the HuggingFace Hub.
Setup:
Install ``langchain-huggingface`` and ensure your Hugging Face token
is saved.
.. code-block:: bash
pip install langchain-huggingface
.. code-block:: python
from huggingface_hub import login
login() # You will be prompted for your HF key, which will then be saved locally
Key init args — completion params:
llm: `HuggingFaceTextGenInference`, `HuggingFaceEndpoint`, `HuggingFaceHub`, or
'HuggingFacePipeline' LLM to be used.
Key init args — client params:
custom_get_token_ids: Optional[Callable[[str], List[int]]]
Optional encoder to use for counting tokens.
metadata: Optional[Dict[str, Any]]
Metadata to add to the run trace.
tags: Optional[List[str]]
Tags to add to the run trace.
tokenizer: Any
verbose: bool
Whether to print out response text.
See full list of supported init args and their descriptions in the params
section.
Instantiate:
.. code-block:: python
from langchain_huggingface import HuggingFaceEndpoint,
ChatHuggingFace
llm = HuggingFaceEndpoint(
repo_id="microsoft/Phi-3-mini-4k-instruct",
task="text-generation",
max_new_tokens=512,
do_sample=False,
repetition_penalty=1.03,
)
chat = ChatHuggingFace(llm=llm, verbose=True)
Invoke:
.. code-block:: python
messages = [
("system", "You are a helpful translator. Translate the user
sentence to French."),
("human", "I love programming."),
]
chat(...).invoke(messages)
.. code-block:: python
AIMessage(content='Je ai une passion pour le programme.\n\nIn
French, we use "ai" for masculine subjects and "a" for feminine
subjects. Since "programming" is gender-neutral in English, we
will go with the masculine "programme".\n\nConfirmation: "J\'aime
le programme." is more commonly used. The sentence above is
technically accurate, but less commonly used in spoken French as
"ai" is used less frequently in everyday speech.',
response_metadata={'token_usage': ChatCompletionOutputUsage
(completion_tokens=100, prompt_tokens=55, total_tokens=155),
'model': '', 'finish_reason': 'length'},
id='run-874c24b7-0272-4c99-b259-5d6d7facbc56-0')
Stream:
.. code-block:: python
for chunk in chat.stream(messages):
print(chunk)
.. code-block:: python
content='Je ai une passion pour le programme.\n\nIn French, we use
"ai" for masculine subjects and "a" for feminine subjects.
Since "programming" is gender-neutral in English,
we will go with the masculine "programme".\n\nConfirmation:
"J\'aime le programme." is more commonly used. The sentence
above is technically accurate, but less commonly used in spoken
French as "ai" is used less frequently in everyday speech.'
response_metadata={'token_usage': ChatCompletionOutputUsage
(completion_tokens=100, prompt_tokens=55, total_tokens=155),
'model': '', 'finish_reason': 'length'}
id='run-7d7b1967-9612-4f9a-911a-b2b5ca85046a-0'
Async:
.. code-block:: python
await chat.ainvoke(messages)
.. code-block:: python
AIMessage(content='Je déaime le programming.\n\nLittérale : Je
(j\'aime) déaime (le) programming.\n\nNote: "Programming" in
French is "programmation". But here, I used "programming" instead
of "programmation" because the user said "I love programming"
instead of "I love programming (in French)", which would be
"J\'aime la programmation". By translating the sentence
literally, I preserved the original meaning of the user\'s
sentence.', id='run-fd850318-e299-4735-b4c6-3496dc930b1d-0')
Tool calling:
.. code-block:: python
from langchain_core.pydantic_v1 import BaseModel, Field
class GetWeather(BaseModel):
'''Get the current weather in a given location'''
location: str = Field(..., description="The city and state,
e.g. San Francisco, CA")
class GetPopulation(BaseModel):
'''Get the current population in a given location'''
location: str = Field(..., description="The city and state,
e.g. San Francisco, CA")
chat_with_tools = chat.bind_tools([GetWeather, GetPopulation])
ai_msg = chat_with_tools.invoke("Which city is hotter today and
which is bigger: LA or NY?")
ai_msg.tool_calls
.. code-block:: python
[{'name': 'GetPopulation',
'args': {'location': 'Los Angeles, CA'},
'id': '0'}]
Response metadata
.. code-block:: python
ai_msg = chat.invoke(messages)
ai_msg.response_metadata
.. code-block:: python
{'token_usage': ChatCompletionOutputUsage(completion_tokens=100,
prompt_tokens=8, total_tokens=108),
'model': '',
'finish_reason': 'length'}
""" # noqa: E501
llm: Any
"""LLM, must be of type HuggingFaceTextGenInference, HuggingFaceEndpoint,
HuggingFaceHub, or HuggingFacePipeline."""
# TODO: Is system_message used anywhere?
system_message: SystemMessage = SystemMessage(content=DEFAULT_SYSTEM_PROMPT)
tokenizer: Any = None
model_id: Optional[str] = None
def __init__(self, **kwargs: Any):
super().__init__(**kwargs)
from transformers import AutoTokenizer # type: ignore[import]
self._resolve_model_id()
self.tokenizer = (
AutoTokenizer.from_pretrained(self.model_id)
if self.tokenizer is None
else self.tokenizer
)
@root_validator(pre=False, skip_on_failure=True)
def validate_llm(cls, values: dict) -> dict:
if (
not _is_huggingface_hub(values["llm"])
and not _is_huggingface_textgen_inference(values["llm"])
and not _is_huggingface_endpoint(values["llm"])
and not _is_huggingface_pipeline(values["llm"])
):
raise TypeError(
"Expected llm to be one of HuggingFaceTextGenInference, "
"HuggingFaceEndpoint, HuggingFaceHub, HuggingFacePipeline "
f"received {type(values['llm'])}"
)
return values
def _create_chat_result(self, response: TGI_RESPONSE) -> ChatResult:
generations = []
finish_reason = response.choices[0].finish_reason
gen = ChatGeneration(
message=_convert_TGI_message_to_LC_message(response.choices[0].message),
generation_info={"finish_reason": finish_reason},
)
generations.append(gen)
token_usage = response.usage
model_object = self.llm.inference_server_url
llm_output = {"token_usage": token_usage, "model": model_object}
return ChatResult(generations=generations, llm_output=llm_output)
def _generate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if _is_huggingface_textgen_inference(self.llm):
message_dicts = self._create_message_dicts(messages, stop)
answer = self.llm.client.chat(messages=message_dicts, **kwargs)
return self._create_chat_result(answer)
elif _is_huggingface_endpoint(self.llm):
message_dicts = self._create_message_dicts(messages, stop)
answer = self.llm.client.chat_completion(messages=message_dicts, **kwargs)
return self._create_chat_result(answer)
else:
llm_input = self._to_chat_prompt(messages)
llm_result = self.llm._generate(
prompts=[llm_input], stop=stop, run_manager=run_manager, **kwargs
)
return self._to_chat_result(llm_result)
async def _agenerate(
self,
messages: List[BaseMessage],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> ChatResult:
if _is_huggingface_textgen_inference(self.llm):
message_dicts = self._create_message_dicts(messages, stop)
answer = await self.llm.async_client.chat(messages=message_dicts, **kwargs)
return self._create_chat_result(answer)
else:
llm_input = self._to_chat_prompt(messages)
llm_result = await self.llm._agenerate(
prompts=[llm_input], stop=stop, run_manager=run_manager, **kwargs
)
return self._to_chat_result(llm_result)
def _to_chat_prompt(
self,
messages: List[BaseMessage],
) -> str:
"""Convert a list of messages into a prompt format expected by wrapped LLM."""
if not messages:
raise ValueError("At least one HumanMessage must be provided!")
if not isinstance(messages[-1], HumanMessage):
raise ValueError("Last message must be a HumanMessage!")
messages_dicts = [self._to_chatml_format(m) for m in messages]
return self.tokenizer.apply_chat_template(
messages_dicts, tokenize=False, add_generation_prompt=True
)
def _to_chatml_format(self, message: BaseMessage) -> dict:
"""Convert LangChain message to ChatML format."""
if isinstance(message, SystemMessage):
role = "system"
elif isinstance(message, AIMessage):
role = "assistant"
elif isinstance(message, HumanMessage):
role = "user"
else:
raise ValueError(f"Unknown message type: {type(message)}")
return {"role": role, "content": message.content}
@staticmethod
def _to_chat_result(llm_result: LLMResult) -> ChatResult:
chat_generations = []
for g in llm_result.generations[0]:
chat_generation = ChatGeneration(
message=AIMessage(content=g.text), generation_info=g.generation_info
)
chat_generations.append(chat_generation)
return ChatResult(
generations=chat_generations, llm_output=llm_result.llm_output
)
def _resolve_model_id(self) -> None:
"""Resolve the model_id from the LLM's inference_server_url"""
from huggingface_hub import list_inference_endpoints # type: ignore[import]
if _is_huggingface_hub(self.llm) or (
hasattr(self.llm, "repo_id") and self.llm.repo_id
):
self.model_id = self.llm.repo_id
return
elif _is_huggingface_textgen_inference(self.llm):
endpoint_url: Optional[str] = self.llm.inference_server_url
elif _is_huggingface_pipeline(self.llm):
self.model_id = self.llm.model_id
return
else:
endpoint_url = self.llm.endpoint_url
available_endpoints = list_inference_endpoints("*")
for endpoint in available_endpoints:
if endpoint.url == endpoint_url:
self.model_id = endpoint.repository
if not self.model_id:
raise ValueError(
"Failed to resolve model_id:"
f"Could not find model id for inference server: {endpoint_url}"
"Make sure that your Hugging Face token has access to the endpoint."
)
def _create_message_dicts(
self, messages: List[BaseMessage], stop: Optional[List[str]]
) -> List[Dict[Any, Any]]:
message_dicts = [_convert_message_to_chat_message(m) for m in messages]
return message_dicts
@property
def _llm_type(self) -> str:
return "huggingface-chat-wrapper"