"""Groq Chat wrapper."""
from __future__ import annotations
import json
import os
import warnings
from operator import itemgetter
from typing import (
    Any,
    AsyncIterator,
    Callable,
    Dict,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Sequence,
    Tuple,
    Type,
    TypedDict,
    Union,
    cast,
)
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import LanguageModelInput
from langchain_core.language_models.chat_models import (
    BaseChatModel,
    LangSmithParams,
    agenerate_from_stream,
    generate_from_stream,
)
from langchain_core.messages import (
    AIMessage,
    AIMessageChunk,
    BaseMessage,
    BaseMessageChunk,
    ChatMessage,
    ChatMessageChunk,
    FunctionMessage,
    FunctionMessageChunk,
    HumanMessage,
    HumanMessageChunk,
    InvalidToolCall,
    SystemMessage,
    SystemMessageChunk,
    ToolCall,
    ToolMessage,
    ToolMessageChunk,
)
from langchain_core.messages.tool import tool_call_chunk as create_tool_call_chunk
from langchain_core.output_parsers import (
    JsonOutputParser,
    PydanticOutputParser,
)
from langchain_core.output_parsers.base import OutputParserLike
from langchain_core.output_parsers.openai_tools import (
    JsonOutputKeyToolsParser,
    PydanticToolsParser,
    make_invalid_tool_call,
    parse_tool_call,
)
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.pydantic_v1 import (
    BaseModel,
    Field,
    SecretStr,
    root_validator,
)
from langchain_core.runnables import Runnable, RunnableMap, RunnablePassthrough
from langchain_core.tools import BaseTool
from langchain_core.utils import (
    convert_to_secret_str,
    get_from_dict_or_env,
    get_pydantic_field_names,
)
from langchain_core.utils.function_calling import (
    convert_to_openai_function,
    convert_to_openai_tool,
)
from langchain_core.utils.pydantic import is_basemodel_subclass
[docs]
class ChatGroq(BaseChatModel):
    """`Groq` Chat large language models API.
    To use, you should have the
    environment variable ``GROQ_API_KEY`` set with your API key.
    Any parameters that are valid to be passed to the groq.create call
    can be passed in, even if not explicitly saved on this class.
    Setup:
        Install ``langchain-groq`` and set environment variable
        ``GROQ_API_KEY``.
        .. code-block:: bash
            pip install -U langchain-groq
            export GROQ_API_KEY="your-api-key"
    Key init args — completion params:
        model: str
            Name of Groq model to use. E.g. "mixtral-8x7b-32768".
        temperature: float
            Sampling temperature. Ranges from 0.0 to 1.0.
        max_tokens: Optional[int]
            Max number of tokens to generate.
        model_kwargs: Dict[str, Any]
            Holds any model parameters valid for create call not
            explicitly specified.
    Key init args — client params:
        timeout: Union[float, Tuple[float, float], Any, None]
            Timeout for requests.
        max_retries: int
            Max number of retries.
        api_key: Optional[str]
            Groq API key. If not passed in will be read from env var GROQ_API_KEY.
        base_url: Optional[str]
            Base URL path for API requests, leave blank if not using a proxy
            or service emulator.
        custom_get_token_ids: Optional[Callable[[str], List[int]]]
            Optional encoder to use for counting tokens.
    See full list of supported init args and their descriptions in the params
    section.
    Instantiate:
        .. code-block:: python
            from langchain_groq import ChatGroq
            llm = ChatGroq(
                model="mixtral-8x7b-32768",
                temperature=0.0,
                max_retries=2,
                # other params...
            )
    Invoke:
        .. code-block:: python
            messages = [
                ("system", "You are a helpful translator. Translate the user
                sentence to French."),
                ("human", "I love programming."),
            ]
            llm.invoke(messages)
        .. code-block:: python
            AIMessage(content='The English sentence "I love programming" can
            be translated to French as "J\'aime programmer". The word
            "programming" is translated as "programmer" in French.',
            response_metadata={'token_usage': {'completion_tokens': 38,
            'prompt_tokens': 28, 'total_tokens': 66, 'completion_time':
            0.057975474, 'prompt_time': 0.005366091, 'queue_time': None,
            'total_time': 0.063341565}, 'model_name': 'mixtral-8x7b-32768',
            'system_fingerprint': 'fp_c5f20b5bb1', 'finish_reason': 'stop',
            'logprobs': None}, id='run-ecc71d70-e10c-4b69-8b8c-b8027d95d4b8-0')
    Stream:
        .. code-block:: python
            for chunk in llm.stream(messages):
                print(chunk)
        .. code-block:: python
            content='' id='run-4e9f926b-73f5-483b-8ef5-09533d925853'
            content='The' id='run-4e9f926b-73f5-483b-8ef5-09533d925853'
            content=' English' id='run-4e9f926b-73f5-483b-8ef5-09533d925853'
            content=' sentence' id='run-4e9f926b-73f5-483b-8ef5-09533d925853'
            ...
            content=' program' id='run-4e9f926b-73f5-483b-8ef5-09533d925853'
            content='".' id='run-4e9f926b-73f5-483b-8ef5-09533d925853'
            content='' response_metadata={'finish_reason': 'stop'}
            id='run-4e9f926b-73f5-483b-8ef5-09533d925853
        .. code-block:: python
            stream = llm.stream(messages)
            full = next(stream)
            for chunk in stream:
                full += chunk
            full
        .. code-block:: python
            AIMessageChunk(content='The English sentence "I love programming"
            can be translated to French as "J\'aime programmer".
            Here\'s the breakdown of the sentence:\n\n* "J\'aime" is the
            French equivalent of "I love"\n* "programmer" is the French
            infinitive for "to program"\n\nSo, the literal translation
            is "I love to program". However, in English we often omit the
            "to" when talking about activities we love, and the same applies
            to French. Therefore, "J\'aime programmer" is the correct and
            natural way to express "I love programming" in French.',
            response_metadata={'finish_reason': 'stop'},
            id='run-a3c35ac4-0750-4d08-ac55-bfc63805de76')
    Async:
        .. code-block:: python
            await llm.ainvoke(messages)
        .. code-block:: python
           AIMessage(content='The English sentence "I love programming" can
           be translated to French as "J\'aime programmer". The word
           "programming" is translated as "programmer" in French. I hope
           this helps! Let me know if you have any other questions.',
           response_metadata={'token_usage': {'completion_tokens': 53,
           'prompt_tokens': 28, 'total_tokens': 81, 'completion_time':
           0.083623752, 'prompt_time': 0.007365126, 'queue_time': None,
           'total_time': 0.090988878}, 'model_name': 'mixtral-8x7b-32768',
           'system_fingerprint': 'fp_c5f20b5bb1', 'finish_reason': 'stop',
           'logprobs': None}, id='run-897f3391-1bea-42e2-82e0-686e2367bcf8-0')
    Tool calling:
        .. code-block:: python
            from langchain_core.pydantic_v1 import BaseModel, Field
            class GetWeather(BaseModel):
                '''Get the current weather in a given location'''
                location: str = Field(..., description="The city and state,
                e.g. San Francisco, CA")
            class GetPopulation(BaseModel):
                '''Get the current population in a given location'''
                location: str = Field(..., description="The city and state,
                e.g. San Francisco, CA")
            model_with_tools = llm.bind_tools([GetWeather, GetPopulation])
            ai_msg = model_with_tools.invoke("What is the population of NY?")
            ai_msg.tool_calls
        .. code-block:: python
            [{'name': 'GetPopulation',
            'args': {'location': 'NY'},
            'id': 'call_bb8d'}]
        See ``ChatGroq.bind_tools()`` method for more.
    Structured output:
        .. code-block:: python
            from typing import Optional
            from langchain_core.pydantic_v1 import BaseModel, Field
            class Joke(BaseModel):
                '''Joke to tell user.'''
                setup: str = Field(description="The setup of the joke")
                punchline: str = Field(description="The punchline to the joke")
                rating: Optional[int] = Field(description="How funny the joke
                is, from 1 to 10")
            structured_model = llm.with_structured_output(Joke)
            structured_model.invoke("Tell me a joke about cats")
        .. code-block:: python
            Joke(setup="Why don't cats play poker in the jungle?",
            punchline='Too many cheetahs!', rating=None)
        See ``ChatGroq.with_structured_output()`` for more.
    Response metadata
        .. code-block:: python
            ai_msg = llm.invoke(messages)
            ai_msg.response_metadata
        .. code-block:: python
            {'token_usage': {'completion_tokens': 70,
            'prompt_tokens': 28,
            'total_tokens': 98,
            'completion_time': 0.111956391,
            'prompt_time': 0.007518279,
            'queue_time': None,
            'total_time': 0.11947467},
            'model_name': 'mixtral-8x7b-32768',
            'system_fingerprint': 'fp_c5f20b5bb1',
            'finish_reason': 'stop',
            'logprobs': None}
    """
    client: Any = Field(default=None, exclude=True)  #: :meta private:
    async_client: Any = Field(default=None, exclude=True)  #: :meta private:
    model_name: str = Field(default="mixtral-8x7b-32768", alias="model")
    """Model name to use."""
    temperature: float = 0.7
    """What sampling temperature to use."""
    stop: Optional[Union[List[str], str]] = Field(None, alias="stop_sequences")
    """Default stop sequences."""
    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `create` call not explicitly specified."""
    groq_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
    """Automatically inferred from env var `GROQ_API_KEY` if not provided."""
    groq_api_base: Optional[str] = Field(default=None, alias="base_url")
    """Base URL path for API requests, leave blank if not using a proxy or service
        emulator."""
    # to support explicit proxy for Groq
    groq_proxy: Optional[str] = None
    request_timeout: Union[float, Tuple[float, float], Any, None] = Field(
        default=None, alias="timeout"
    )
    """Timeout for requests to Groq completion API. Can be float, httpx.Timeout or
        None."""
    max_retries: int = 2
    """Maximum number of retries to make when generating."""
    streaming: bool = False
    """Whether to stream the results or not."""
    n: int = 1
    """Number of chat completions to generate for each prompt."""
    max_tokens: Optional[int] = None
    """Maximum number of tokens to generate."""
    default_headers: Union[Mapping[str, str], None] = None
    default_query: Union[Mapping[str, object], None] = None
    # Configure a custom httpx client. See the
    # [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
    http_client: Union[Any, None] = None
    """Optional httpx.Client."""
    http_async_client: Union[Any, None] = None
    """Optional httpx.AsyncClient. Only used for async invocations. Must specify
        http_client as well if you'd like a custom client for sync invocations."""
    class Config:
        """Configuration for this pydantic object."""
        allow_population_by_field_name = True
    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = get_pydantic_field_names(cls)
        extra = values.get("model_kwargs", {})
        for field_name in list(values):
            if field_name in extra:
                raise ValueError(f"Found {field_name} supplied twice.")
            if field_name not in all_required_field_names:
                warnings.warn(
                    f"""WARNING! {field_name} is not default parameter.
                    {field_name} was transferred to model_kwargs.
                    Please confirm that {field_name} is what you intended."""
                )
                extra[field_name] = values.pop(field_name)
        invalid_model_kwargs = all_required_field_names.intersection(extra.keys())
        if invalid_model_kwargs:
            raise ValueError(
                f"Parameters {invalid_model_kwargs} should be specified explicitly. "
                f"Instead they were passed in as part of `model_kwargs` parameter."
            )
        values["model_kwargs"] = extra
        return values
    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        if values["n"] < 1:
            raise ValueError("n must be at least 1.")
        if values["n"] > 1 and values["streaming"]:
            raise ValueError("n must be 1 when streaming.")
        if values["temperature"] == 0:
            values["temperature"] = 1e-8
        values["groq_api_key"] = convert_to_secret_str(
            get_from_dict_or_env(values, "groq_api_key", "GROQ_API_KEY")
        )
        values["groq_api_base"] = values["groq_api_base"] or os.getenv("GROQ_API_BASE")
        values["groq_proxy"] = values["groq_proxy"] = os.getenv("GROQ_PROXY")
        client_params = {
            "api_key": values["groq_api_key"].get_secret_value(),
            "base_url": values["groq_api_base"],
            "timeout": values["request_timeout"],
            "max_retries": values["max_retries"],
            "default_headers": values["default_headers"],
            "default_query": values["default_query"],
        }
        try:
            import groq
            sync_specific = {"http_client": values["http_client"]}
            if not values.get("client"):
                values["client"] = groq.Groq(
                    **client_params, **sync_specific
                ).chat.completions
            if not values.get("async_client"):
                async_specific = {"http_client": values["http_async_client"]}
                values["async_client"] = groq.AsyncGroq(
                    **client_params, **async_specific
                ).chat.completions
        except ImportError:
            raise ImportError(
                "Could not import groq python package. "
                "Please install it with `pip install groq`."
            )
        return values
    #
    # Serializable class method overrides
    #
    @property
    def lc_secrets(self) -> Dict[str, str]:
        return {"groq_api_key": "GROQ_API_KEY"}
    @classmethod
    def is_lc_serializable(cls) -> bool:
        """Return whether this model can be serialized by Langchain."""
        return True
    #
    # BaseChatModel method overrides
    #
    @property
    def _llm_type(self) -> str:
        """Return type of model."""
        return "groq-chat"
    def _get_ls_params(
        self, stop: Optional[List[str]] = None, **kwargs: Any
    ) -> LangSmithParams:
        """Get standard params for tracing."""
        params = self._get_invocation_params(stop=stop, **kwargs)
        ls_params = LangSmithParams(
            ls_provider="groq",
            ls_model_name=self.model_name,
            ls_model_type="chat",
            ls_temperature=params.get("temperature", self.temperature),
        )
        if ls_max_tokens := params.get("max_tokens", self.max_tokens):
            ls_params["ls_max_tokens"] = ls_max_tokens
        if ls_stop := stop or params.get("stop", None) or self.stop:
            ls_params["ls_stop"] = ls_stop if isinstance(ls_stop, list) else [ls_stop]
        return ls_params
    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        if self.streaming:
            stream_iter = self._stream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return generate_from_stream(stream_iter)
        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {
            **params,
            **kwargs,
        }
        response = self.client.create(messages=message_dicts, **params)
        return self._create_chat_result(response)
    async def _agenerate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        if self.streaming:
            stream_iter = self._astream(
                messages, stop=stop, run_manager=run_manager, **kwargs
            )
            return await agenerate_from_stream(stream_iter)
        message_dicts, params = self._create_message_dicts(messages, stop)
        params = {
            **params,
            **kwargs,
        }
        response = await self.async_client.create(messages=message_dicts, **params)
        return self._create_chat_result(response)
    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        message_dicts, params = self._create_message_dicts(messages, stop)
        # groq api does not support streaming with tools yet
        if "tools" in kwargs:
            response = self.client.create(
                messages=message_dicts, **{**params, **kwargs}
            )
            chat_result = self._create_chat_result(response)
            generation = chat_result.generations[0]
            message = cast(AIMessage, generation.message)
            tool_call_chunks = [
                create_tool_call_chunk(
                    name=rtc["function"].get("name"),
                    args=rtc["function"].get("arguments"),
                    id=rtc.get("id"),
                    index=rtc.get("index"),
                )
                for rtc in message.additional_kwargs.get("tool_calls", [])
            ]
            chunk_ = ChatGenerationChunk(
                message=AIMessageChunk(
                    content=message.content,
                    additional_kwargs=message.additional_kwargs,
                    tool_call_chunks=tool_call_chunks,
                    usage_metadata=message.usage_metadata,
                ),
                generation_info=generation.generation_info,
            )
            if run_manager:
                geninfo = chunk_.generation_info or {}
                run_manager.on_llm_new_token(
                    chunk_.text,
                    chunk=chunk_,
                    logprobs=geninfo.get("logprobs"),
                )
            yield chunk_
            return
        params = {**params, **kwargs, "stream": True}
        default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
        for chunk in self.client.create(messages=message_dicts, **params):
            if not isinstance(chunk, dict):
                chunk = chunk.dict()
            if len(chunk["choices"]) == 0:
                continue
            choice = chunk["choices"][0]
            message_chunk = _convert_chunk_to_message_chunk(chunk, default_chunk_class)
            generation_info = {}
            if finish_reason := choice.get("finish_reason"):
                generation_info["finish_reason"] = finish_reason
            logprobs = choice.get("logprobs")
            if logprobs:
                generation_info["logprobs"] = logprobs
            default_chunk_class = message_chunk.__class__
            generation_chunk = ChatGenerationChunk(
                message=message_chunk, generation_info=generation_info or None
            )
            if run_manager:
                run_manager.on_llm_new_token(
                    generation_chunk.text, chunk=generation_chunk, logprobs=logprobs
                )
            yield generation_chunk
    async def _astream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> AsyncIterator[ChatGenerationChunk]:
        message_dicts, params = self._create_message_dicts(messages, stop)
        # groq api does not support streaming with tools yet
        if "tools" in kwargs:
            response = await self.async_client.create(
                messages=message_dicts, **{**params, **kwargs}
            )
            chat_result = self._create_chat_result(response)
            generation = chat_result.generations[0]
            message = cast(AIMessage, generation.message)
            tool_call_chunks = [
                {
                    "name": rtc["function"].get("name"),
                    "args": rtc["function"].get("arguments"),
                    "id": rtc.get("id"),
                    "index": rtc.get("index"),
                }
                for rtc in message.additional_kwargs.get("tool_calls", [])
            ]
            chunk_ = ChatGenerationChunk(
                message=AIMessageChunk(
                    content=message.content,
                    additional_kwargs=message.additional_kwargs,
                    tool_call_chunks=tool_call_chunks,  # type: ignore[arg-type]
                    usage_metadata=message.usage_metadata,
                ),
                generation_info=generation.generation_info,
            )
            if run_manager:
                geninfo = chunk_.generation_info or {}
                await run_manager.on_llm_new_token(
                    chunk_.text,
                    chunk=chunk_,
                    logprobs=geninfo.get("logprobs"),
                )
            yield chunk_
            return
        params = {**params, **kwargs, "stream": True}
        default_chunk_class: Type[BaseMessageChunk] = AIMessageChunk
        async for chunk in await self.async_client.create(
            messages=message_dicts, **params
        ):
            if not isinstance(chunk, dict):
                chunk = chunk.dict()
            if len(chunk["choices"]) == 0:
                continue
            choice = chunk["choices"][0]
            message_chunk = _convert_chunk_to_message_chunk(chunk, default_chunk_class)
            generation_info = {}
            if finish_reason := choice.get("finish_reason"):
                generation_info["finish_reason"] = finish_reason
            logprobs = choice.get("logprobs")
            if logprobs:
                generation_info["logprobs"] = logprobs
            default_chunk_class = message_chunk.__class__
            generation_chunk = ChatGenerationChunk(
                message=message_chunk, generation_info=generation_info or None
            )
            if run_manager:
                await run_manager.on_llm_new_token(
                    token=generation_chunk.text,
                    chunk=generation_chunk,
                    logprobs=logprobs,
                )
            yield generation_chunk
    #
    # Internal methods
    #
    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling Groq API."""
        params = {
            "model": self.model_name,
            "stream": self.streaming,
            "n": self.n,
            "temperature": self.temperature,
            "stop": self.stop,
            **self.model_kwargs,
        }
        if self.max_tokens is not None:
            params["max_tokens"] = self.max_tokens
        return params
    def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult:
        generations = []
        if not isinstance(response, dict):
            response = response.dict()
        token_usage = response.get("usage", {})
        for res in response["choices"]:
            message = _convert_dict_to_message(res["message"])
            if token_usage and isinstance(message, AIMessage):
                input_tokens = token_usage.get("prompt_tokens", 0)
                output_tokens = token_usage.get("completion_tokens", 0)
                message.usage_metadata = {
                    "input_tokens": input_tokens,
                    "output_tokens": output_tokens,
                    "total_tokens": token_usage.get(
                        "total_tokens", input_tokens + output_tokens
                    ),
                }
            generation_info = dict(finish_reason=res.get("finish_reason"))
            if "logprobs" in res:
                generation_info["logprobs"] = res["logprobs"]
            gen = ChatGeneration(
                message=message,
                generation_info=generation_info,
            )
            generations.append(gen)
        llm_output = {
            "token_usage": token_usage,
            "model_name": self.model_name,
            "system_fingerprint": response.get("system_fingerprint", ""),
        }
        return ChatResult(generations=generations, llm_output=llm_output)
    def _create_message_dicts(
        self, messages: List[BaseMessage], stop: Optional[List[str]]
    ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]:
        params = self._default_params
        if stop is not None:
            params["stop"] = stop
        message_dicts = [_convert_message_to_dict(m) for m in messages]
        return message_dicts, params
    def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict:
        overall_token_usage: dict = {}
        system_fingerprint = None
        for output in llm_outputs:
            if output is None:
                # Happens in streaming
                continue
            token_usage = output["token_usage"]
            if token_usage is not None:
                for k, v in token_usage.items():
                    if k in overall_token_usage and v is not None:
                        overall_token_usage[k] += v
                    else:
                        overall_token_usage[k] = v
            if system_fingerprint is None:
                system_fingerprint = output.get("system_fingerprint")
        combined = {"token_usage": overall_token_usage, "model_name": self.model_name}
        if system_fingerprint:
            combined["system_fingerprint"] = system_fingerprint
        return combined
[docs]
    def bind_functions(
        self,
        functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]],
        function_call: Optional[
            Union[_FunctionCall, str, Literal["auto", "none"]]
        ] = None,
        **kwargs: Any,
    ) -> Runnable[LanguageModelInput, BaseMessage]:
        """Bind functions (and other objects) to this chat model.
        Model is compatible with OpenAI function-calling API.
        NOTE: Using bind_tools is recommended instead, as the `functions` and
            `function_call` request parameters are officially deprecated.
        Args:
            functions: A list of function definitions to bind to this chat model.
                Can be  a dictionary, pydantic model, or callable. Pydantic
                models and callables will be automatically converted to
                their schema dictionary representation.
            function_call: Which function to require the model to call.
                Must be the name of the single provided function or
                "auto" to automatically determine which function to call
                (if any).
            **kwargs: Any additional parameters to pass to the
                :class:`~langchain.runnable.Runnable` constructor.
        """
        formatted_functions = [convert_to_openai_function(fn) for fn in functions]
        if function_call is not None:
            function_call = (
                {"name": function_call}
                if isinstance(function_call, str)
                and function_call not in ("auto", "none")
                else function_call
            )
            if isinstance(function_call, dict) and len(formatted_functions) != 1:
                raise ValueError(
                    "When specifying `function_call`, you must provide exactly one "
                    "function."
                )
            if (
                isinstance(function_call, dict)
                and formatted_functions[0]["name"] != function_call["name"]
            ):
                raise ValueError(
                    f"Function call {function_call} was specified, but the only "
                    f"provided function was {formatted_functions[0]['name']}."
                )
            kwargs = {**kwargs, "function_call": function_call}
        return super().bind(
            functions=formatted_functions,
            **kwargs,
        ) 
[docs]
    def with_structured_output(
        self,
        schema: Optional[Union[Dict, Type[BaseModel]]] = None,
        *,
        method: Literal["function_calling", "json_mode"] = "function_calling",
        include_raw: bool = False,
        **kwargs: Any,
    ) -> Runnable[LanguageModelInput, Union[Dict, BaseModel]]:
        """Model wrapper that returns outputs formatted to match the given schema.
        Args:
            schema:
                The output schema. Can be passed in as:
                    - an OpenAI function/tool schema,
                    - a JSON Schema,
                    - a TypedDict class (supported added in 0.1.9),
                    - or a Pydantic class.
                If ``schema`` is a Pydantic class then the model output will be a
                Pydantic instance of that class, and the model-generated fields will be
                validated by the Pydantic class. Otherwise the model output will be a
                dict and will not be validated. See :meth:`langchain_core.utils.function_calling.convert_to_openai_tool`
                for more on how to properly specify types and descriptions of
                schema fields when specifying a Pydantic or TypedDict class.
                .. versionchanged:: 0.1.9
                    Added support for TypedDict class.
            method:
                The method for steering model generation, either "function_calling"
                or "json_mode". If "function_calling" then the schema will be converted
                to an OpenAI function and the returned model will make use of the
                function-calling API. If "json_mode" then OpenAI's JSON mode will be
                used. Note that if using "json_mode" then you must include instructions
                for formatting the output into the desired schema into the model call.
            include_raw:
                If False then only the parsed structured output is returned. If
                an error occurs during model output parsing it will be raised. If True
                then both the raw model response (a BaseMessage) and the parsed model
                response will be returned. If an error occurs during output parsing it
                will be caught and returned as well. The final output is always a dict
                with keys "raw", "parsed", and "parsing_error".
        Returns:
            A Runnable that takes same inputs as a :class:`langchain_core.language_models.chat.BaseChatModel`.
            If ``include_raw`` is False and ``schema`` is a Pydantic class, Runnable outputs
            an instance of ``schema`` (i.e., a Pydantic object).
            Otherwise, if ``include_raw`` is False then Runnable outputs a dict.
            If ``include_raw`` is True, then Runnable outputs a dict with keys:
                - ``"raw"``: BaseMessage
                - ``"parsed"``: None if there was a parsing error, otherwise the type depends on the ``schema`` as described above.
                - ``"parsing_error"``: Optional[BaseException]
        Example: schema=Pydantic class, method="function_calling", include_raw=False:
            .. code-block:: python
                from typing import Optional
                from langchain_groq import ChatGroq
                from langchain_core.pydantic_v1 import BaseModel, Field
                class AnswerWithJustification(BaseModel):
                    '''An answer to the user question along with justification for the answer.'''
                    answer: str
                    # If we provide default values and/or descriptions for fields, these will be passed
                    # to the model. This is an important part of improving a model's ability to
                    # correctly return structured outputs.
                    justification: Optional[str] = Field(
                        default=None, description="A justification for the answer."
                    )
                llm = ChatGroq(model="llama-3.1-405b-reasoning", temperature=0)
                structured_llm = llm.with_structured_output(AnswerWithJustification)
                structured_llm.invoke(
                    "What weighs more a pound of bricks or a pound of feathers"
                )
                # -> AnswerWithJustification(
                #     answer='They weigh the same',
                #     justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'
                # )
        Example: schema=Pydantic class, method="function_calling", include_raw=True:
            .. code-block:: python
                from langchain_groq import ChatGroq
                from langchain_core.pydantic_v1 import BaseModel
                class AnswerWithJustification(BaseModel):
                    '''An answer to the user question along with justification for the answer.'''
                    answer: str
                    justification: str
                llm = ChatGroq(model="llama-3.1-405b-reasoning", temperature=0)
                structured_llm = llm.with_structured_output(
                    AnswerWithJustification, include_raw=True
                )
                structured_llm.invoke(
                    "What weighs more a pound of bricks or a pound of feathers"
                )
                # -> {
                #     'raw': AIMessage(content='', additional_kwargs={'tool_calls': [{'id': 'call_Ao02pnFYXD6GN1yzc0uXPsvF', 'function': {'arguments': '{"answer":"They weigh the same.","justification":"Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ."}', 'name': 'AnswerWithJustification'}, 'type': 'function'}]}),
                #     'parsed': AnswerWithJustification(answer='They weigh the same.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume or density of the objects may differ.'),
                #     'parsing_error': None
                # }
        Example: schema=TypedDict class, method="function_calling", include_raw=False:
            .. code-block:: python
                # IMPORTANT: If you are using Python <=3.8, you need to import Annotated
                # from typing_extensions, not from typing.
                from typing_extensions import Annotated, TypedDict
                from langchain_groq import ChatGroq
                class AnswerWithJustification(TypedDict):
                    '''An answer to the user question along with justification for the answer.'''
                    answer: str
                    justification: Annotated[
                        Optional[str], None, "A justification for the answer."
                    ]
                llm = ChatGroq(model="llama-3.1-405b-reasoning", temperature=0)
                structured_llm = llm.with_structured_output(AnswerWithJustification)
                structured_llm.invoke(
                    "What weighs more a pound of bricks or a pound of feathers"
                )
                # -> {
                #     'answer': 'They weigh the same',
                #     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
                # }
        Example: schema=OpenAI function schema, method="function_calling", include_raw=False:
            .. code-block:: python
                from langchain_groq import ChatGroq
                oai_schema = {
                    'name': 'AnswerWithJustification',
                    'description': 'An answer to the user question along with justification for the answer.',
                    'parameters': {
                        'type': 'object',
                        'properties': {
                            'answer': {'type': 'string'},
                            'justification': {'description': 'A justification for the answer.', 'type': 'string'}
                        },
                       'required': ['answer']
                   }
               }
                llm = ChatGroq(model="llama-3.1-405b-reasoning", temperature=0)
                structured_llm = llm.with_structured_output(oai_schema)
                structured_llm.invoke(
                    "What weighs more a pound of bricks or a pound of feathers"
                )
                # -> {
                #     'answer': 'They weigh the same',
                #     'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The weight is the same, but the volume and density of the two substances differ.'
                # }
        Example: schema=Pydantic class, method="json_mode", include_raw=True:
            .. code-block::
                from langchain_groq import ChatGroq
                from langchain_core.pydantic_v1 import BaseModel
                class AnswerWithJustification(BaseModel):
                    answer: str
                    justification: str
                llm = ChatGroq(model="llama-3.1-405b-reasoning", temperature=0)
                structured_llm = llm.with_structured_output(
                    AnswerWithJustification,
                    method="json_mode",
                    include_raw=True
                )
                structured_llm.invoke(
                    "Answer the following question. "
                    "Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
                    "What's heavier a pound of bricks or a pound of feathers?"
                )
                # -> {
                #     'raw': AIMessage(content='{\n    "answer": "They are both the same weight.",\n    "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
                #     'parsed': AnswerWithJustification(answer='They are both the same weight.', justification='Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'),
                #     'parsing_error': None
                # }
        Example: schema=None, method="json_mode", include_raw=True:
            .. code-block::
                structured_llm = llm.with_structured_output(method="json_mode", include_raw=True)
                structured_llm.invoke(
                    "Answer the following question. "
                    "Make sure to return a JSON blob with keys 'answer' and 'justification'.\n\n"
                    "What's heavier a pound of bricks or a pound of feathers?"
                )
                # -> {
                #     'raw': AIMessage(content='{\n    "answer": "They are both the same weight.",\n    "justification": "Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight." \n}'),
                #     'parsed': {
                #         'answer': 'They are both the same weight.',
                #         'justification': 'Both a pound of bricks and a pound of feathers weigh one pound. The difference lies in the volume and density of the materials, not the weight.'
                #     },
                #     'parsing_error': None
                # }
        """  # noqa: E501
        if kwargs:
            raise ValueError(f"Received unsupported arguments {kwargs}")
        is_pydantic_schema = _is_pydantic_class(schema)
        if method == "function_calling":
            if schema is None:
                raise ValueError(
                    "schema must be specified when method is 'function_calling'. "
                    "Received None."
                )
            tool_name = convert_to_openai_tool(schema)["function"]["name"]
            llm = self.bind_tools([schema], tool_choice=tool_name)
            if is_pydantic_schema:
                output_parser: OutputParserLike = PydanticToolsParser(
                    tools=[schema],  # type: ignore[list-item]
                    first_tool_only=True,  # type: ignore[list-item]
                )
            else:
                output_parser = JsonOutputKeyToolsParser(
                    key_name=tool_name, first_tool_only=True
                )
        elif method == "json_mode":
            llm = self.bind(response_format={"type": "json_object"})
            output_parser = (
                PydanticOutputParser(pydantic_object=schema)  # type: ignore[type-var, arg-type]
                if is_pydantic_schema
                else JsonOutputParser()
            )
        else:
            raise ValueError(
                f"Unrecognized method argument. Expected one of 'function_calling' or "
                f"'json_mode'. Received: '{method}'"
            )
        if include_raw:
            parser_assign = RunnablePassthrough.assign(
                parsed=itemgetter("raw") | output_parser, parsing_error=lambda _: None
            )
            parser_none = RunnablePassthrough.assign(parsed=lambda _: None)
            parser_with_fallback = parser_assign.with_fallbacks(
                [parser_none], exception_key="parsing_error"
            )
            return RunnableMap(raw=llm) | parser_with_fallback
        else:
            return llm | output_parser 
 
def _is_pydantic_class(obj: Any) -> bool:
    return isinstance(obj, type) and is_basemodel_subclass(obj)
class _FunctionCall(TypedDict):
    name: str
#
# Type conversion helpers
#
def _convert_message_to_dict(message: BaseMessage) -> dict:
    """Convert a LangChain message to a dictionary.
    Args:
        message: The LangChain message.
    Returns:
        The dictionary.
    """
    message_dict: Dict[str, Any]
    if isinstance(message, ChatMessage):
        message_dict = {"role": message.role, "content": message.content}
    elif isinstance(message, HumanMessage):
        message_dict = {"role": "user", "content": message.content}
    elif isinstance(message, AIMessage):
        message_dict = {"role": "assistant", "content": message.content}
        if "function_call" in message.additional_kwargs:
            message_dict["function_call"] = message.additional_kwargs["function_call"]
            # If function call only, content is None not empty string
            if message_dict["content"] == "":
                message_dict["content"] = None
        if message.tool_calls or message.invalid_tool_calls:
            message_dict["tool_calls"] = [
                _lc_tool_call_to_groq_tool_call(tc) for tc in message.tool_calls
            ] + [
                _lc_invalid_tool_call_to_groq_tool_call(tc)
                for tc in message.invalid_tool_calls
            ]
        elif "tool_calls" in message.additional_kwargs:
            message_dict["tool_calls"] = message.additional_kwargs["tool_calls"]
            # If tool calls only, content is None not empty string
            if message_dict["content"] == "":
                message_dict["content"] = None
    elif isinstance(message, SystemMessage):
        message_dict = {"role": "system", "content": message.content}
    elif isinstance(message, FunctionMessage):
        message_dict = {
            "role": "function",
            "content": message.content,
            "name": message.name,
        }
    elif isinstance(message, ToolMessage):
        message_dict = {
            "role": "tool",
            "content": message.content,
            "tool_call_id": message.tool_call_id,
        }
    else:
        raise TypeError(f"Got unknown type {message}")
    if "name" in message.additional_kwargs:
        message_dict["name"] = message.additional_kwargs["name"]
    return message_dict
def _convert_chunk_to_message_chunk(
    chunk: Mapping[str, Any], default_class: Type[BaseMessageChunk]
) -> BaseMessageChunk:
    choice = chunk["choices"][0]
    _dict = choice["delta"]
    role = cast(str, _dict.get("role"))
    content = cast(str, _dict.get("content") or "")
    additional_kwargs: Dict = {}
    if _dict.get("function_call"):
        function_call = dict(_dict["function_call"])
        if "name" in function_call and function_call["name"] is None:
            function_call["name"] = ""
        additional_kwargs["function_call"] = function_call
    if _dict.get("tool_calls"):
        additional_kwargs["tool_calls"] = _dict["tool_calls"]
    if role == "user" or default_class == HumanMessageChunk:
        return HumanMessageChunk(content=content)
    elif role == "assistant" or default_class == AIMessageChunk:
        if usage := (chunk.get("x_groq") or {}).get("usage"):
            input_tokens = usage.get("prompt_tokens", 0)
            output_tokens = usage.get("completion_tokens", 0)
            usage_metadata = {
                "input_tokens": input_tokens,
                "output_tokens": output_tokens,
                "total_tokens": usage.get("total_tokens", input_tokens + output_tokens),
            }
        else:
            usage_metadata = None
        return AIMessageChunk(
            content=content,
            additional_kwargs=additional_kwargs,
            usage_metadata=usage_metadata,  # type: ignore[arg-type]
        )
    elif role == "system" or default_class == SystemMessageChunk:
        return SystemMessageChunk(content=content)
    elif role == "function" or default_class == FunctionMessageChunk:
        return FunctionMessageChunk(content=content, name=_dict["name"])
    elif role == "tool" or default_class == ToolMessageChunk:
        return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"])
    elif role or default_class == ChatMessageChunk:
        return ChatMessageChunk(content=content, role=role)
    else:
        return default_class(content=content)  # type: ignore
def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage:
    """Convert a dictionary to a LangChain message.
    Args:
        _dict: The dictionary.
    Returns:
        The LangChain message.
    """
    id_ = _dict.get("id")
    role = _dict.get("role")
    if role == "user":
        return HumanMessage(content=_dict.get("content", ""))
    elif role == "assistant":
        content = _dict.get("content", "") or ""
        additional_kwargs: Dict = {}
        if function_call := _dict.get("function_call"):
            additional_kwargs["function_call"] = dict(function_call)
        tool_calls = []
        invalid_tool_calls = []
        if raw_tool_calls := _dict.get("tool_calls"):
            additional_kwargs["tool_calls"] = raw_tool_calls
            for raw_tool_call in raw_tool_calls:
                try:
                    tool_calls.append(parse_tool_call(raw_tool_call, return_id=True))
                except Exception as e:
                    invalid_tool_calls.append(
                        make_invalid_tool_call(raw_tool_call, str(e))
                    )
        return AIMessage(
            content=content,
            id=id_,
            additional_kwargs=additional_kwargs,
            tool_calls=tool_calls,
            invalid_tool_calls=invalid_tool_calls,
        )
    elif role == "system":
        return SystemMessage(content=_dict.get("content", ""))
    elif role == "function":
        return FunctionMessage(content=_dict.get("content", ""), name=_dict.get("name"))  # type: ignore[arg-type]
    elif role == "tool":
        additional_kwargs = {}
        if "name" in _dict:
            additional_kwargs["name"] = _dict["name"]
        return ToolMessage(
            content=_dict.get("content", ""),
            tool_call_id=_dict.get("tool_call_id"),
            additional_kwargs=additional_kwargs,
        )
    else:
        return ChatMessage(content=_dict.get("content", ""), role=role)  # type: ignore[arg-type]
def _lc_tool_call_to_groq_tool_call(tool_call: ToolCall) -> dict:
    return {
        "type": "function",
        "id": tool_call["id"],
        "function": {
            "name": tool_call["name"],
            "arguments": json.dumps(tool_call["args"]),
        },
    }
def _lc_invalid_tool_call_to_groq_tool_call(
    invalid_tool_call: InvalidToolCall,
) -> dict:
    return {
        "type": "function",
        "id": invalid_tool_call["id"],
        "function": {
            "name": invalid_tool_call["name"],
            "arguments": invalid_tool_call["args"],
        },
    }