Source code for langchain_google_community.vertex_rank

import warnings
from typing import TYPE_CHECKING, Any, Optional, Sequence

from google.api_core import exceptions as core_exceptions  # type: ignore
from google.auth.credentials import Credentials  # type: ignore
from langchain_core.callbacks import Callbacks
from langchain_core.documents import Document
from langchain_core.documents.compressor import BaseDocumentCompressor
from langchain_core.pydantic_v1 import Extra, Field

from langchain_google_community._utils import get_client_info

if TYPE_CHECKING:
    from google.cloud import discoveryengine_v1alpha  # type: ignore

if TYPE_CHECKING:
    from google.cloud import discoveryengine_v1alpha  # type: ignore


[docs] class VertexAIRank(BaseDocumentCompressor): """ Initializes the Vertex AI Ranker with configurable parameters. Inherits from BaseDocumentCompressor for document processing and validation features, respectively. Attributes: project_id (str): Google Cloud project ID location_id (str): Location ID for the ranking service. ranking_config (str): Required. The name of the rank service config, such as default_config. It is set to default_config by default if unspecified. model (str): The identifier of the model to use. It is one of: - ``semantic-ranker-512@latest``: Semantic ranking model with maximum input token size 512. It is set to ``semantic-ranker-512@latest`` by default if unspecified. top_n (int): The number of results to return. If this is unset or no bigger than zero, returns all results. ignore_record_details_in_response (bool): If true, the response will contain only record ID and score. By default, it is false, the response will contain record details. id_field (Optional[str]): Specifies a unique document metadata field to use as an id. title_field (Optional[str]): Specifies the document metadata field to use as title. credentials (Optional[Credentials]): Google Cloud credentials object. credentials_path (Optional[str]): Path to the Google Cloud service account credentials file. """ project_id: str = Field(default=None) location_id: str = Field(default="global") ranking_config: str = Field(default="default_config") model: str = Field(default="semantic-ranker-512@latest") top_n: int = Field(default=10) ignore_record_details_in_response: bool = Field(default=False) id_field: Optional[str] = Field(default=None) title_field: Optional[str] = Field(default=None) credentials: Optional[Credentials] = Field(default=None) credentials_path: Optional[str] = Field(default=None) client: Any def __init__(self, **kwargs: Any): """ Constructor for VertexAIRanker, allowing for specification of ranking configuration and initialization of Google Cloud services. The parameters accepted are the same as the attributes listed above. """ super().__init__(**kwargs) self.client = kwargs.get("client") # type: ignore if not self.client: self.client = self._get_rank_service_client() def _get_rank_service_client(self) -> "discoveryengine_v1alpha.RankServiceClient": """ Returns a RankServiceClient instance for making API calls to the Vertex AI Ranking service. Returns: A RankServiceClient instance. """ try: from google.cloud import discoveryengine_v1alpha # type: ignore except ImportError as exc: raise ImportError( "Could not import google-cloud-discoveryengine python package. " "Please, install vertexaisearch dependency group: " "`pip install langchain-google-community[vertexaisearch]`" ) from exc return discoveryengine_v1alpha.RankServiceClient( credentials=( self.credentials or Credentials.from_service_account_file(self.credentials_path) # type: ignore[attr-defined] if self.credentials_path else None ), client_info=get_client_info(module="vertex-ai-search"), ) def _rerank_documents( self, query: str, documents: Sequence[Document] ) -> Sequence[Document]: """ Reranks documents based on the provided query. Args: query: The query to use for reranking. documents: The list of documents to rerank. Returns: A list of reranked documents. """ from google.cloud import discoveryengine_v1alpha # type: ignore try: records = [ discoveryengine_v1alpha.RankingRecord( id=(doc.metadata.get(self.id_field) if self.id_field else str(idx)), content=doc.page_content, **( {"title": doc.metadata.get(self.title_field)} if self.title_field else {} ), ) for idx, doc in enumerate(documents) if doc.page_content or (self.title_field and doc.metadata.get(self.title_field)) ] except KeyError: warnings.warn(f"id_field '{self.id_field}' not found in document metadata.") ranking_config_path = ( f"projects/{self.project_id}/locations/{self.location_id}" f"/rankingConfigs/{self.ranking_config}" ) request = discoveryengine_v1alpha.RankRequest( ranking_config=ranking_config_path, model=self.model, query=query, records=records, top_n=self.top_n, ignore_record_details_in_response=self.ignore_record_details_in_response, ) try: response = self.client.rank(request=request) except core_exceptions.GoogleAPICallError as e: print(f"Error in Vertex AI Ranking API call: {str(e)}") raise RuntimeError(f"Error in Vertex AI Ranking API call: {str(e)}") from e return [ Document( page_content=record.content if not self.ignore_record_details_in_response else "", metadata={ "id": record.id, "relevance_score": record.score, **({self.title_field: record.title} if self.title_field else {}), }, ) for record in response.records ]
[docs] def compress_documents( self, documents: Sequence[Document], query: str, callbacks: Optional[Callbacks] = None, ) -> Sequence[Document]: """ Compresses documents using Vertex AI's rerank API. Args: documents: List of Document instances to compress. query: Query string to use for compressing the documents. callbacks: Callbacks to execute during compression (not used here). Returns: A list of Document instances, compressed. """ return self._rerank_documents(query, documents)
class Config: extra = Extra.ignore arbitrary_types_allowed = True