Source code for langchain_cohere.react_multi_hop.parsing

import json
import logging
import re
from typing import Any, Dict, List, Mapping, MutableMapping, Tuple, Union

from langchain_core.agents import AgentAction, AgentActionMessageLog, AgentFinish
from langchain_core.messages import AIMessage
from langchain_core.output_parsers import BaseOutputParser

from langchain_cohere import CohereCitation

OUTPUT_KEY = "output"
GROUNDED_ANSWER_KEY = "grounded_answer"


[docs] class CohereToolsReactAgentOutputParser( BaseOutputParser[Union[List[AgentAction], AgentFinish]] ): """Parses a message into agent actions/finish."""
[docs] def parse(self, text: str) -> Union[List[AgentAction], AgentFinish]: # Parse the structured output of the final answer. if "Answer: " in text: prefix_map = { "answer": "Answer:", "grounded_answer": "Grounded answer:", "relevant_docs": "Relevant Documents:", "cited_docs": "Cited Documents:", } parsed_answer = parse_answer_with_prefixes(text, prefix_map) return AgentFinish( return_values={ OUTPUT_KEY: parsed_answer["answer"], GROUNDED_ANSWER_KEY: parsed_answer["grounded_answer"], }, log=text, ) elif any([x in text for x in ["Plan: ", "Reflection: ", "Action: "]]): completion, plan, actions = parse_actions(text) agent_actions: List[AgentAction] = [] for i, action in enumerate(actions): agent_action = AgentActionMessageLog( tool=action["tool_name"], tool_input=action["parameters"], log=f"\n{action}\n" if i > 0 else f"\n{plan}\n{action}\n", message_log=[AIMessage(content="\n" + completion)], ) agent_actions.append(agent_action) return agent_actions else: raise ValueError( "\nCould not parse generation as it did not contain Plan, Reflection," + f"Action, or Answer. Input: {text}\n\n" )
[docs] def parse_jsonified_tool_use_generation( tool_use_generation: str, tool_use_prefix: str ) -> List[Dict]: """Parses model-generated jsonified actions. Expects input of the form "{tool_use_prefix}: ```json\n[{list of jsonified objects}]```" outputs parsed list of jsonified objects. """ def _extract_codeblocks_from_md(text: str) -> List[str]: return re.findall(r"`{3}([^`]*)`{0,3}", text) raw_generation = re.sub(f"^{tool_use_prefix} ", "", tool_use_generation) code_block_sections = _extract_codeblocks_from_md(raw_generation) if len(code_block_sections) != 1: # should have exactly 1 code block raise ValueError(f"Action Parsing Failed: {tool_use_generation}") # only json allowed: assert code_block_sections[0].startswith( "json\n" ), f"Action Parsing Failed: {tool_use_generation}" actions = json.loads(re.sub("^json\n", "", code_block_sections[0])) if not isinstance(actions, list): raise ValueError(f"Action Parsing Failed: {tool_use_generation}") if len(actions): if any( not isinstance(action, Dict) or "tool_name" not in action for action in actions ): raise ValueError(f"Action Parsing Failed: {tool_use_generation}") return actions
[docs] def parse_answer_with_prefixes( completion: str, prefixes: Dict[str, str] ) -> Dict[str, str]: """parses string into key-value pairs, according to patterns supplied in prefixes. Also strips. if inputs are: completion = "\nhello: sam\ngoodbye then: paul.", prefixes = {"greeting": "hello:", "farewell": "goodbye then:"} the expected returned result is: {"greeting": "sam", "farewell": "paul."} Args: completion (str): text to split prefixes (Dict[str, str]): a key-value dict of keys and patterns. See example above Returns: Dict[str, str]: parsed result """ # sort out prefixes re_pat = "(" + "|".join([re.escape(p) for p in prefixes.values()]) + ")" reverse_prefix_map = {v: k for k, v in prefixes.items()} split = re.split(re_pat, completion) split = split[1:] parsed = {} for prefix, value in zip(split[::2], split[1::2]): if prefix in reverse_prefix_map: # if the prefix is a match if ( reverse_prefix_map[prefix] not in parsed ): # first occurrence of a prefix is kept, others discarded parsed[reverse_prefix_map[prefix]] = value.strip() return parsed
[docs] def parse_actions(generation: str) -> Tuple[str, str, List[Dict]]: """Parse action selections from model output.""" plan = "" generation = generation.strip() actions = generation try: if "Plan: " in generation or "Reflection: " in generation: # Model is trained to output a Plan or Reflection followed by an action. # Use regex to extract the plan and action. regex = r"^(Plan|Reflection)\s*\d*\s*:(.*?)(Action\s*\d*\s*:\s*\d*\s*```json\n.*?```)" # noqa: E501 action_match = re.search(regex, generation, re.DOTALL) if not action_match: raise ValueError( f"Failed to parse multihop completion for input: {generation}" ) plan = action_match.group(2).strip() actions = action_match.group(3).strip() else: # Catch the case where model outputs only an action. regex = r"^(Action\s*\d*\s*:\s*\d*\s*```json\n.*?```)" action_match = re.search(regex, generation, re.DOTALL) if not action_match: raise ValueError( f"Failed to parse multihop completion for input: {generation}" ) actions = action_match.group(1).strip() except Exception as e: logging.error(f"Failed to parse multihop completion for input: {generation}") logging.error(f"Error: {e}") parsed_actions = parse_jsonified_tool_use_generation(actions, "Action:") return generation, plan, parsed_actions
[docs] def parse_citations( grounded_answer: str, documents: List[MutableMapping] ) -> Tuple[str, List[CohereCitation]]: """ Parses a grounded_generation (from parse_actions) and documents (from convert_to_documents) into a (generation, CohereCitation list) tuple. """ no_markup_answer, parsed_answer = _parse_answer_spans(grounded_answer) citations: List[CohereCitation] = [] start = 0 # Add an id field to each document. This may be useful for future deduplication. for i in range(len(documents)): documents[i]["id"] = documents[i].get("id") or f"doc_{i}" for answer in parsed_answer: text = answer.get("text", "") document_indexes = answer.get("cited_docs") if not document_indexes: # There were no citations for this piece of text. start += len(text) continue end = start + len(text) # Look up the cited document by index cited_documents: List[Mapping] = [] cited_document_ids: List[str] = [] for index in set(document_indexes): if index >= len(documents): # The document index doesn't exist continue cited_documents.append(documents[index]) cited_document_ids.append(documents[index]["id"]) citations.append( CohereCitation( start=start, end=end, text=text, documents=cited_documents, document_ids=set(cited_document_ids), ) ) start = end return no_markup_answer, citations
def _strip_spans(answer: str) -> str: """removes any <co> tags from a string, including trailing partial tags input: "hi my <co>name</co> is <co: 1> patrick</co:3> and <co" output: "hi my name is patrick and" Args: answer (str): string Returns: str: same string with co tags removed """ answer = re.sub(r"<co(.*?)>|</co(.*?)>", "", answer) idx = answer.find("<co") if idx > -1: answer = answer[:idx] idx = answer.find("</") if idx > -1: answer = answer[:idx] return answer def _parse_answer_spans(grounded_answer: str) -> Tuple[str, List[Dict[str, Any]]]: actual_cites = [] for c in re.findall(r"<co:(.*?)>", grounded_answer): actual_cites.append(c.strip().split(",")) no_markup_answer = _strip_spans(grounded_answer) current_idx = 0 parsed_answer: List[Dict[str, Union[str, List[int]]]] = [] cited_docs_set = [] last_entry_is_open_cite = False parsed_current_cite_document_idxs: List[int] = [] while current_idx < len(grounded_answer): current_cite = re.search(r"<co: (.*?)>", grounded_answer[current_idx:]) if current_cite: # previous part parsed_answer.append( { "text": grounded_answer[ current_idx : current_idx + current_cite.start() ] } ) current_cite_document_idxs = current_cite.group(1).split(",") parsed_current_cite_document_idxs = [] for cited_idx in current_cite_document_idxs: if cited_idx.isdigit(): cited_idx = int(cited_idx.strip()) parsed_current_cite_document_idxs.append(cited_idx) if cited_idx not in cited_docs_set: cited_docs_set.append(cited_idx) current_idx += current_cite.end() current_cite_close = re.search( r"</co: " + current_cite.group(1) + ">", grounded_answer[current_idx:] ) if current_cite_close: # there might have been issues parsing the ids, so we need to check # that they are actually ints and available if len(parsed_current_cite_document_idxs) > 0: pt = grounded_answer[ current_idx : current_idx + current_cite_close.start() ] parsed_answer.append( {"text": pt, "cited_docs": parsed_current_cite_document_idxs} ) else: parsed_answer.append( { "text": grounded_answer[ current_idx : current_idx + current_cite_close.start() ], } ) current_idx += current_cite_close.end() else: last_entry_is_open_cite = True break else: break # don't forget about the last one if last_entry_is_open_cite: pt = _strip_spans(grounded_answer[current_idx:]) parsed_answer.append( {"text": pt, "cited_docs": parsed_current_cite_document_idxs} ) else: parsed_answer.append({"text": _strip_spans(grounded_answer[current_idx:])}) return no_markup_answer, parsed_answer