"""Wrapper around MemoryDB vector database."""
from __future__ import annotations
import logging
import os
import uuid
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Dict,
    Iterable,
    List,
    Mapping,
    Optional,
    Tuple,
    Type,
    Union,
    cast,
)
import numpy as np
import yaml  # type: ignore[import-untyped]
from langchain_core._api import deprecated
from langchain_core.callbacks import (
    AsyncCallbackManagerForRetrieverRun,
    CallbackManagerForRetrieverRun,
)
from langchain_core.documents import Document
from langchain_core.embeddings import Embeddings
from langchain_core.utils import get_from_dict_or_env
from langchain_core.vectorstores import VectorStore, VectorStoreRetriever
from langchain_aws.utilities.redis import (
    _array_to_buffer,
    _buffer_to_array,
    get_client,
)
from langchain_aws.utilities.utils import maximal_marginal_relevance
from langchain_aws.vectorstores.inmemorydb.constants import (
    INMEMORYDB_TAG_SEPARATOR,
)
logger = logging.getLogger(__name__)
ListOfDict = List[Dict[str, str]]
if TYPE_CHECKING:
    from redis.client import Redis as InMemoryDBType  # type: ignore[import-untyped]
    from redis.commands.search.query import Query  # type: ignore[import-untyped]
    from langchain_aws.vectorstores.inmemorydb.filters import InMemoryDBFilterExpression
    from langchain_aws.vectorstores.inmemorydb.schema import InMemoryDBModel
def _default_relevance_score(val: float) -> float:
    return 1 - val
[docs]
def check_index_exists(client: InMemoryDBType, index_name: str) -> bool:
    """Check if MemoryDB index exists."""
    try:
        client.ft(index_name).info()
    except:  # noqa: E722
        logger.debug("Index does not exist")
        return False
    logger.debug("Index already exists")
    return True 
[docs]
class InMemoryVectorStore(VectorStore):
    """InMemoryVectorStore vector database.
    To use, you should have the ``redis`` python package installed
    for  AWS MemoryDB
    .. code-block:: bash
    Once running, you can connect to the MemoryDB server with the following url schemas:
    - redis://<host>:<port> # simple connection
    - redis://<username>:<password>@<host>:<port> # connection with authentication
    - rediss://<host>:<port> # connection with SSL
    - rediss://<username>:<password>@<host>:<port> # connection with SSL and auth
    Examples:
    The following examples show various ways to use the Redis VectorStore with
    LangChain.
    For all the following examples assume we have the following imports:
    .. code-block:: python
        from langchain_aws.vectorstores import InMemoryVectorStore
    Initialize, create index, and load Documents
        .. code-block:: python
            from langchain_aws.vectorstores import InMemoryVectorStore
            rds = InMemoryVectorStore.from_documents(
                documents, # a list of Document objects from loaders or created
                embeddings, # an Embeddings object
                redis_url="redis://cluster_endpoint:6379",
            )
    Initialize, create index, and load Documents with metadata
        .. code-block:: python
            rds = InMemoryVectorStore.from_texts(
                texts, # a list of strings
                metadata, # a list of metadata dicts
                embeddings, # an Embeddings object
                redis_url="redis://cluster_endpoint:6379",
            )
    Initialize, create index, and load Documents with metadata and return keys
        .. code-block:: python
            rds, keys = InMemoryVectorStore.from_texts_return_keys(
                texts, # a list of strings
                metadata, # a list of metadata dicts
                embeddings, # an Embeddings object
                redis_url="redis://cluster_endpoint:6379",
            )
    For use cases where the index needs to stay alive, you can initialize
    with an index name such that it's easier to reference later
        .. code-block:: python
            rds = InMemoryVectorStore.from_texts(
                texts, # a list of strings
                metadata, # a list of metadata dicts
                embeddings, # an Embeddings object
                index_name="my-index",
                redis_url="redis://cluster_endpoint:6379",
            )
    Initialize and connect to an existing index (from above)
        .. code-block:: python
            # must pass in schema and key_prefix from another index
            existing_rds = InMemoryVectorStore.from_existing_index(
                embeddings, # an Embeddings object
                index_name="my-index",
                schema=rds.schema, # schema dumped from another index
                key_prefix=rds.key_prefix, # key prefix from another index
                redis_url="redis://cluster_endpoint:6379",
            )
    Advanced examples:
    Custom vector schema can be supplied to change the way that
    MemoryDB creates the underlying vector schema. This is useful
    for production use cases where you want to optimize the
    vector schema for your use case. ex. using HNSW instead of
    FLAT (knn) which is the default
        .. code-block:: python
            vector_schema = {
                "algorithm": "HNSW"
            }
            rds = InMemoryVectorStore.from_texts(
                texts, # a list of strings
                metadata, # a list of metadata dicts
                embeddings, # an Embeddings object
                vector_schema=vector_schema,
                redis_url="redis://cluster_endpoint:6379",
            )
    Custom index schema can be supplied to change the way that the
    metadata is indexed. This is useful for you would like to use the
    hybrid querying (filtering) capability of MemoryDB.
    By default, this implementation will automatically generate the index
    schema according to the following rules:
        - All strings are indexed as text fields
        - All numbers are indexed as numeric fields
        - All lists of strings are indexed as tag fields (joined by
            langchain_aws.vectorstores.inmemorydb.constants.INMEMORYDB_TAG_SEPARATOR)
        - All None values are not indexed but still stored in MemoryDB these are
            not retrievable through the interface here, but the raw MemoryDB client
            can be used to retrieve them.
        - All other types are not indexed
    To override these rules, you can pass in a custom index schema like the following
        .. code-block:: yaml
            tag:
                - name: credit_score
            text:
                - name: user
                - name: job
    Typically, the ``credit_score`` field would be a text field since it's a string,
    however, we can override this behavior by specifying the field type as shown with
    the yaml config (can also be a dictionary) above and the code below.
        .. code-block:: python
            rds = InMemoryVectorStore.from_texts(
                texts, # a list of strings
                metadata, # a list of metadata dicts
                embeddings, # an Embeddings object
                index_schema="path/to/index_schema.yaml", # can also be a dictionary
                redis_url="redis://cluster_endpoint:6379",
            )
    When connecting to an existing index where a custom schema has been applied, it's
    important to pass in the same schema to the ``from_existing_index`` method.
    Otherwise, the schema for newly added samples will be incorrect and metadata
    will not be returned.
    """
    DEFAULT_VECTOR_SCHEMA = {
        "name": "content_vector",
        "algorithm": "FLAT",
        "dims": 1536,
        "distance_metric": "COSINE",
        "datatype": "FLOAT32",
    }
[docs]
    def __init__(
        self,
        redis_url: str,
        index_name: str,
        embedding: Embeddings,
        index_schema: Optional[Union[Dict[str, ListOfDict], str, os.PathLike]] = None,
        vector_schema: Optional[Dict[str, Union[str, int]]] = None,
        relevance_score_fn: Optional[Callable[[float], float]] = None,
        key_prefix: Optional[str] = None,
        **kwargs: Any,
    ):
        """Initialize MemoryDB vector store with necessary components."""
        self._check_deprecated_kwargs(kwargs)
        self.index_name = index_name
        self._embeddings = embedding
        try:
            redis_client = get_client(redis_url=redis_url, **kwargs)
        except ValueError as e:
            raise ValueError(f"Redis failed to connect: {e}")
        self.client = redis_client
        self.relevance_score_fn = relevance_score_fn
        self._schema = self._get_schema_with_defaults(index_schema, vector_schema)
        self.key_prefix = key_prefix if key_prefix is not None else f"doc:{index_name}" 
    @property
    def embeddings(self) -> Optional[Embeddings]:
        """Access the query embedding object if available."""
        return self._embeddings
[docs]
    @classmethod
    def from_texts_return_keys(
        cls,
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        index_name: Optional[str] = None,
        index_schema: Optional[Union[Dict[str, ListOfDict], str, os.PathLike]] = None,
        vector_schema: Optional[Dict[str, Union[str, int]]] = None,
        **kwargs: Any,
    ) -> Tuple[InMemoryVectorStore, List[str]]:
        """Create a InMemoryVectorStore vectorstore from raw documents.
        This is a user-friendly interface that:
            1. Embeds documents.
            2. Creates a new InMemoryVectorStore index if it doesn't already exist
            3. Adds the documents to the newly created InMemoryVectorStore index.
            4. Returns the keys of the newly created documents once stored.
        This method will generate schema based on the metadata passed in
        if the `index_schema` is not defined. If the `index_schema` is defined,
        it will compare against the generated schema and warn if there are
        differences. If you are purposefully defining the schema for the
        metadata, then you can ignore that warning.
        To examine the schema options, initialize an instance of this class
        and print out the schema using the `InMemoryVectorStore.schema`` property. This
        will include the content and content_vector classes which are
        always present in the langchain schema.
        Example:
            .. code-block:: python
                from langchain_aws.vectorstores import InMemoryVectorStore
                                embeddings = OpenAIEmbeddings()
                redis, keys = InMemoryVectorStore.from_texts_return_keys(
                    texts,
                    embeddings,
                    redis_url="redis://cluster_endpoint:6379"
                )
        Args:
            texts (List[str]): List of texts to add to the vectorstore.
            embedding (Embeddings): Embeddings to use for the vectorstore.
            metadatas (Optional[List[dict]], optional): Optional list of metadata
                dicts to add to the vectorstore. Defaults to None.
            index_name (Optional[str], optional): Optional name of the index to
                create or add to. Defaults to None.
            index_schema (Optional[Union[Dict[str, ListOfDict], str, os.PathLike]],
                optional):
                Optional fields to index within the metadata. Overrides generated
                schema. Defaults to None.
            vector_schema (Optional[Dict[str, Union[str, int]]], optional): Optional
                vector schema to use. Defaults to None.
            **kwargs (Any): Additional keyword arguments to pass to the Redis client.
                Returns:
            Tuple[InMemoryVectorStore, List[str]]:
            Tuple of the InMemoryVectorStore instance and the keys of
            the newly created documents.
        Raises:
            ValueError: If the number of metadatas does not match the number of texts.
        """
        try:
            import redis  # type: ignore[import-untyped] # noqa: F401
            from langchain_aws.vectorstores.inmemorydb.schema import read_schema
        except ImportError as e:
            raise ImportError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            ) from e
        redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
        if "redis_url" in kwargs:
            kwargs.pop("redis_url")
        # flag to use generated schema
        if "generate" in kwargs:
            kwargs.pop("generate")
        # see if the user specified keys
        keys = None
        if "keys" in kwargs:
            keys = kwargs.pop("keys")
        # Name of the search index if not given
        if not index_name:
            index_name = uuid.uuid4().hex
        # type check for metadata
        if metadatas:
            if isinstance(metadatas, list) and len(metadatas) != len(texts):  # type: ignore
                raise ValueError("Number of metadatas must match number of texts")
            if not (isinstance(metadatas, list) and isinstance(metadatas[0], dict)):
                raise ValueError("Metadatas must be a list of dicts")
            generated_schema = _generate_field_schema(metadatas[0])
            if index_schema:
                # read in the schema solely to compare to the generated schema
                user_schema = read_schema(index_schema)  # type: ignore
                # the very rare case where a super user decides to pass the index
                # schema and a document loader is used that has metadata which
                # we need to map into fields.
                if user_schema != generated_schema:
                    logger.warning(
                        "`index_schema` does not match generated metadata schema.\n"
                        + "If you meant to manually override the schema, please "
                        + "ignore this message.\n"
                        + f"index_schema: {user_schema}\n"
                        + f"generated_schema: {generated_schema}\n"
                    )
            else:
                # use the generated schema
                index_schema = generated_schema
        # Create instance
        # init the class -- if MemoryDB is unavailable, will throw exception
        instance = cls(
            redis_url,
            index_name,
            embedding,
            index_schema=index_schema,
            vector_schema=vector_schema,
            **kwargs,
        )
        # Add data to MemoryDB
        keys = instance.add_texts(texts, metadatas, keys=keys)
        return instance, keys 
[docs]
    @classmethod
    def from_texts(
        cls: Type[InMemoryVectorStore],
        texts: List[str],
        embedding: Embeddings,
        metadatas: Optional[List[dict]] = None,
        index_name: Optional[str] = None,
        index_schema: Optional[Union[Dict[str, ListOfDict], str, os.PathLike]] = None,
        vector_schema: Optional[Dict[str, Union[str, int]]] = None,
        **kwargs: Any,
    ) -> InMemoryVectorStore:
        """Create a InMemoryVectorStore vectorstore from a list of texts.
        This is a user-friendly interface that:
            1. Embeds documents.
            2. Creates a new InMemoryVectorStore index if it doesn't already exist
            3. Adds the documents to the newly created InMemoryVectorStore index.
        This method will generate schema based on the metadata passed in
        if the `index_schema` is not defined. If the `index_schema` is defined,
        it will compare against the generated schema and warn if there are
        differences. If you are purposefully defining the schema for the
        metadata, then you can ignore that warning.
        To examine the schema options, initialize an instance of this class
        and print out the schema using the `InMemoryVectorStore.schema`` property. This
        will include the content and content_vector classes which are
        always present in the langchain schema.
        Example:
            .. code-block:: python
                from langchain_aws.vectorstores import InMemoryVectorStore
                                embeddings = OpenAIEmbeddings()
        Args:
            texts (List[str]): List of texts to add to the vectorstore.
            embedding (Embeddings): Embedding model class (i.e. OpenAIEmbeddings)
                for embedding queries.
            metadatas (Optional[List[dict]], optional): Optional list of metadata dicts
                to add to the vectorstore. Defaults to None.
            index_name (Optional[str], optional): Optional name of the index to create
                or add to. Defaults to None.
            index_schema (Optional[Union[Dict[str, ListOfDict], str, os.PathLike]],
                optional):
                Optional fields to index within the metadata. Overrides generated
                schema. Defaults to None.
            vector_schema (Optional[Dict[str, Union[str, int]]], optional): Optional
                vector schema to use. Defaults to None.
            **kwargs (Any): Additional keyword arguments to pass to the
            InMemoryVectorStore client.
        Returns:
            InMemoryVectorStore: InMemoryVectorStore VectorStore instance.
        Raises:
            ValueError: If the number of metadatas does not match the number of texts.
            ImportError: If the redis python package is not installed.
        """
        instance, _ = cls.from_texts_return_keys(
            texts,
            embedding,
            metadatas=metadatas,
            index_name=index_name,
            index_schema=index_schema,
            vector_schema=vector_schema,
            **kwargs,
        )
        return instance 
[docs]
    @classmethod
    def from_existing_index(
        cls,
        embedding: Embeddings,
        index_name: str,
        schema: Union[Dict[str, ListOfDict], str, os.PathLike, Dict[str, ListOfDict]],
        key_prefix: Optional[str] = None,
        **kwargs: Any,
    ) -> InMemoryVectorStore:
        """Connect to an existing InMemoryVectorStore index.
        Example:
            .. code-block:: python
                from langchain_aws.vectorstores import InMemoryVectorStore
                embeddings = OpenAIEmbeddings()
                # must pass in schema and key_prefix from another index
                existing_rds = InMemoryVectorStore.from_existing_index(
                    embeddings,
                    index_name="my-index",
                    schema=rds.schema, # schema dumped from another index
                    key_prefix=rds.key_prefix, # key prefix from another index
                    redis_url="redis://username:password@cluster_endpoint:6379",
                )
        Args:
            embedding (Embeddings): Embedding model class (i.e. OpenAIEmbeddings)
                for embedding queries.
            index_name (str): Name of the index to connect to.
            schema (Union[Dict[str, str], str, os.PathLike, Dict[str, ListOfDict]]):
                Schema of the index and the vector schema. Can be a dict, or path to
                yaml file.
            key_prefix (Optional[str]): Prefix to use for all keys in
            InMemoryVectorStore associated
                with this index.
            **kwargs (Any): Additional keyword arguments to pass to the Redis client.
        Returns:
            InMemoryVectorStore: InMemoryVectorStore VectorStore instance.
        Raises:
            ValueError: If the index does not exist.
            ImportError: If the redis python package is not installed.
        """
        redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
        # We need to first remove redis_url from kwargs,
        # otherwise passing it to Redis will result in an error.
        if "redis_url" in kwargs:
            kwargs.pop("redis_url")
        # Create instance
        # init the class -- if InMemoryVectorStore is unavailable, will throw exception
        instance = cls(
            redis_url,
            index_name,
            embedding,
            index_schema=schema,
            key_prefix=key_prefix,
            **kwargs,
        )
        # Check for existence of the declared index
        if not check_index_exists(instance.client, index_name):
            # Will only raise if the running InMemoryVectorStore server does not
            # have a record of this particular index
            # have a record of this particular index
            raise ValueError(
                f"InMemoryVectorStore failed to connect: "
                f"Index {index_name} does not exist."
            )
        return instance 
    @property
    def schema(self) -> Dict[str, List[Any]]:
        """Return the schema of the index."""
        return self._schema.as_dict()
[docs]
    def write_schema(self, path: Union[str, os.PathLike]) -> None:
        """Write the schema to a yaml file."""
        with open(path, "w+") as f:
            yaml.dump(self.schema, f) 
[docs]
    @staticmethod
    def delete(
        ids: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> bool:
        """
        Delete a InMemoryVectorStore entry.
        Args:
            ids: List of ids (keys in redis) to delete.
            redis_url: Redis connection url. This should be passed in the kwargs
                or set as an environment variable: redis_url.
        Returns:
            bool: Whether or not the deletions were successful.
        Raises:
            ValueError: If the redis python package is not installed.
            ValueError: If the ids (keys in redis) are not provided
        """
        redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
        if ids is None:
            raise ValueError("'ids' (keys)() were not provided.")
        try:
            import redis  # noqa: F401
        except ImportError:
            raise ImportError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            )
        try:
            # We need to first remove redis_url from kwargs,
            # otherwise passing it to InMemoryVectorStore will result in an error.
            if "redis_url" in kwargs:
                kwargs.pop("redis_url")
            client = get_client(redis_url=redis_url, **kwargs)
        except ValueError as e:
            raise ValueError(f"Your redis connected error: {e}")
        # Check if index exists
        try:
            client.delete(*ids)
            logger.info("Entries deleted")
            return True
        except:  # noqa: E722
            # ids does not exist
            return False 
[docs]
    @staticmethod
    def drop_index(
        index_name: str,
        delete_documents: bool,
        **kwargs: Any,
    ) -> bool:
        """
        Drop a InMemoryVectorStore search index.
        Args:
            index_name (str): Name of the index to drop.
            delete_documents (bool): Whether to drop the associated documents.
        Returns:
            bool: Whether or not the drop was successful.
        """
        redis_url = get_from_dict_or_env(kwargs, "redis_url", "REDIS_URL")
        try:
            import redis  # noqa: F401
        except ImportError:
            raise ImportError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            )
        try:
            # We need to first remove redis_url from kwargs,
            # otherwise passing it to InMemoryVectorStore will result in an error.
            if "redis_url" in kwargs:
                kwargs.pop("redis_url")
            client = get_client(redis_url=redis_url, **kwargs)
        except ValueError as e:
            raise ValueError(f"Your redis connected error: {e}")
        # Check if index exists
        try:
            client.ft(index_name).dropindex(delete_documents)
            logger.info("Drop index")
            return True
        except:  # noqa: E722
            # Index not exist
            return False 
[docs]
    def add_texts(
        self,
        texts: Iterable[str],
        metadatas: Optional[List[dict]] = None,
        embeddings: Optional[List[List[float]]] = None,
        batch_size: int = 1000,
        clean_metadata: bool = True,
        **kwargs: Any,
    ) -> List[str]:
        """Add more texts to the vectorstore.
        Args:
            texts (Iterable[str]): Iterable of strings/text to add to the vectorstore.
            metadatas (Optional[List[dict]], optional): Optional list of metadatas.
                Defaults to None.
            embeddings (Optional[List[List[float]]], optional): Optional pre-generated
                embeddings. Defaults to None.
            keys (List[str]) or ids (List[str]): Identifiers of entries.
                Defaults to None.
            batch_size (int, optional): Batch size to use for writes. Defaults to 1000.
        Returns:
            List[str]: List of ids added to the vectorstore
        """
        ids = []
        # Get keys or ids from kwargs
        # Other vectorstores use ids
        keys_or_ids = kwargs.get("keys", kwargs.get("ids"))
        # type check for metadata
        if metadatas:
            if isinstance(metadatas, list) and len(metadatas) != len(texts):  # type: ignore
                raise ValueError("Number of metadatas must match number of texts")
            if not (isinstance(metadatas, list) and isinstance(metadatas[0], dict)):
                raise ValueError("Metadatas must be a list of dicts")
        embeddings = embeddings or self._embeddings.embed_documents(list(texts))
        self._create_index_if_not_exist(dim=len(embeddings[0]))
        # Write data to InMemoryVectorStore
        pipeline = self.client.pipeline(transaction=False)
        for i, text in enumerate(texts):
            # Use provided values by default or fallback
            key = keys_or_ids[i] if keys_or_ids else str(uuid.uuid4().hex)
            if not key.startswith(self.key_prefix + ":"):
                key = self.key_prefix + ":" + key
            metadata = metadatas[i] if metadatas else {}
            metadata = _prepare_metadata(metadata) if clean_metadata else metadata
            pipeline.hset(
                key,
                mapping={
                    self._schema.content_key: text,
                    self._schema.content_vector_key: _array_to_buffer(
                        embeddings[i], self._schema.vector_dtype
                    ),
                    **metadata,
                },
            )
            ids.append(key)
            # Write batch
            if i % batch_size == 0:
                pipeline.execute()
        # Cleanup final batch
        pipeline.execute()
        return ids 
[docs]
    def as_retriever(self, **kwargs: Any) -> InMemoryVectorStoreRetriever:
        tags = kwargs.pop("tags", None) or []
        tags.extend(self._get_retriever_tags())
        return InMemoryVectorStoreRetriever(vectorstore=self, **kwargs, tags=tags) 
[docs]
    @deprecated("0.0.1", alternative="similarity_search(distance_threshold=0.1)")
    def similarity_search_limit_score(
        self, query: str, k: int = 4, score_threshold: float = 0.2, **kwargs: Any
    ) -> List[Document]:
        """
        Returns the most similar indexed documents to the query text within the
        score_threshold range.
        Deprecated: Use similarity_search with distance_threshold instead.
        Args:
            query (str): The query text for which to find similar documents.
            k (int): The number of documents to return. Default is 4.
            score_threshold (float): The minimum matching *distance* required
                for a document to be considered a match. Defaults to 0.2.
        Returns:
            List[Document]: A list of documents that are most similar to the query text
                including the match score for each document.
        Note:
            If there are no documents that satisfy the score_threshold value,
            an empty list is returned.
        """
        return self.similarity_search(
            query, k=k, distance_threshold=score_threshold, **kwargs
        ) 
[docs]
    def similarity_search_with_score(
        self,
        query: str,
        k: int = 4,
        filter: Optional[InMemoryDBFilterExpression] = None,
        return_metadata: bool = True,
        **kwargs: Any,
    ) -> List[Tuple[Document, float]]:
        """Run similarity search with **vector distance**.
        The "scores" returned from this function are the raw vector
        distances from the query vector. For similarity scores, use
        ``similarity_search_with_relevance_scores``.
        Args:
            query (str): The query text for which to find similar documents.
            k (int): The number of documents to return. Default is 4.
            filter (InMemoryDBFilterExpression, optional): Optional metadata filter.
                Defaults to None.
            return_metadata (bool, optional): Whether to return metadata.
                Defaults to True.
        Returns:
            List[Tuple[Document, float]]: A list of documents that are
                most similar to the query with the distance for each document.
        """
        try:
            import redis
        except ImportError as e:
            raise ImportError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            ) from e
        if "score_threshold" in kwargs:
            logger.warning(
                "score_threshold is deprecated. Use distance_threshold instead."
                + "score_threshold should only be used in "
                + "similarity_search_with_relevance_scores."
                + "score_threshold will be removed in a future release.",
            )
        query_embedding = self._embeddings.embed_query(query)
        redis_query, params_dict = self._prepare_query(
            query_embedding,
            k=k,
            filter=filter,
            with_metadata=return_metadata,
            with_distance=True,
            **kwargs,
        )
        # Perform vector search
        # ignore type because redis-py is wrong about bytes
        try:
            results = self.client.ft(self.index_name).search(redis_query, params_dict)  # type: ignore
        except redis.exceptions.ResponseError as e:
            # split error message and see if it starts with "Syntax"
            if str(e).split(" ")[0] == "Syntax":
                raise ValueError(
                    "Query failed with syntax error. "
                    + "This is likely due to malformation of "
                    + "filter, vector, or query argument"
                ) from e
            raise e
        # Prepare document results
        docs_with_scores: List[Tuple[Document, float]] = []
        for result in results.docs:
            metadata = {}
            if return_metadata:
                metadata = {"id": result.id}
                metadata.update(self._collect_metadata(result))
            doc = Document(page_content=result.content, metadata=metadata)
            distance = self._calculate_fp_distance(result.distance)
            docs_with_scores.append((doc, distance))
        return docs_with_scores 
[docs]
    def similarity_search(
        self,
        query: str,
        k: int = 4,
        filter: Optional[InMemoryDBFilterExpression] = None,
        return_metadata: bool = True,
        distance_threshold: Optional[float] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Run similarity search
        Args:
            query (str): The query text for which to find similar documents.
            k (int): The number of documents to return. Default is 4.
            filter (InMemoryDBFilterExpression, optional): Optional metadata filter.
                Defaults to None.
            return_metadata (bool, optional): Whether to return metadata.
                Defaults to True.
            distance_threshold (Optional[float], optional): Maximum vector distance
                between selected documents and the query vector. Defaults to None.
        Returns:
            List[Document]: A list of documents that are most similar to the query
                text.
        """
        query_embedding = self._embeddings.embed_query(query)
        return self.similarity_search_by_vector(
            query_embedding,
            k=k,
            filter=filter,
            return_metadata=return_metadata,
            distance_threshold=distance_threshold,
            **kwargs,
        ) 
[docs]
    def similarity_search_by_vector(
        self,
        embedding: List[float],
        k: int = 4,
        filter: Optional[InMemoryDBFilterExpression] = None,
        return_metadata: bool = True,
        distance_threshold: Optional[float] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Run similarity search between a query vector and the indexed vectors.
        Args:
            embedding (List[float]): The query vector for which to find similar
                documents.
            k (int): The number of documents to return. Default is 4.
            filter (InMemoryDBFilterExpression, optional): Optional metadata filter.
                Defaults to None.
            return_metadata (bool, optional): Whether to return metadata.
                Defaults to True.
            distance_threshold (Optional[float], optional): Maximum vector distance
                between selected documents and the query vector. Defaults to None.
        Returns:
            List[Document]: A list of documents that are most similar to the query
                text.
        """
        try:
            import redis
        except ImportError as e:
            raise ImportError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            ) from e
        if "score_threshold" in kwargs:
            logger.warning(
                "score_threshold is deprecated. Use distance_threshold instead."
                + "score_threshold should only be used in "
                + "similarity_search_with_relevance_scores."
                + "score_threshold will be removed in a future release.",
            )
        redis_query, params_dict = self._prepare_query(
            embedding,
            k=k,
            filter=filter,
            distance_threshold=distance_threshold,
            with_metadata=return_metadata,
            with_distance=False,
        )
        # Perform vector search
        # ignore type because redis-py is wrong about bytes
        try:
            results = self.client.ft(self.index_name).search(redis_query, params_dict)  # type: ignore
        except redis.exceptions.ResponseError as e:
            # split error message and see if it starts with "Syntax"
            if str(e).split(" ")[0] == "Syntax":
                raise ValueError(
                    "Query failed with syntax error. "
                    + "This is likely due to malformation of "
                    + "filter, vector, or query argument"
                ) from e
            raise e
        # Prepare document results
        docs = []
        for result in results.docs:
            metadata = {}
            if return_metadata:
                metadata = {"id": result.id}
                metadata.update(self._collect_metadata(result))
            content_key = self._schema.content_key
            docs.append(
                Document(page_content=getattr(result, content_key), metadata=metadata)
            )
        return docs 
[docs]
    def max_marginal_relevance_search(
        self,
        query: str,
        k: int = 4,
        fetch_k: int = 20,
        lambda_mult: float = 0.5,
        filter: Optional[InMemoryDBFilterExpression] = None,
        return_metadata: bool = True,
        distance_threshold: Optional[float] = None,
        **kwargs: Any,
    ) -> List[Document]:
        """Return docs selected using the maximal marginal relevance.
        Maximal marginal relevance optimizes for similarity to query AND diversity
            among selected documents.
        Args:
            query (str): Text to look up documents similar to.
            k (int): Number of Documents to return. Defaults to 4.
            fetch_k (int): Number of Documents to fetch to pass to MMR algorithm.
            lambda_mult (float): Number between 0 and 1 that determines the degree
                of diversity among the results with 0 corresponding
                to maximum diversity and 1 to minimum diversity.
                Defaults to 0.5.
            filter (InMemoryDBFilterExpression, optional): Optional metadata filter.
                Defaults to None.
            return_metadata (bool, optional): Whether to return metadata.
                Defaults to True.
            distance_threshold (Optional[float], optional): Maximum vector distance
                between selected documents and the query vector. Defaults to None.
        Returns:
            List[Document]: A list of Documents selected by maximal marginal relevance.
        """
        # Embed the query
        query_embedding = self._embeddings.embed_query(query)
        # Fetch the initial documents
        prefetch_docs = self.similarity_search_by_vector(
            query_embedding,
            k=fetch_k,
            filter=filter,
            return_metadata=return_metadata,
            distance_threshold=distance_threshold,
            **kwargs,
        )
        prefetch_ids = [doc.metadata["id"] for doc in prefetch_docs]
        # Get the embeddings for the fetched documents
        prefetch_embeddings = [
            _buffer_to_array(
                cast(
                    bytes,
                    self.client.hget(prefetch_id, self._schema.content_vector_key),
                ),
                dtype=self._schema.vector_dtype,
            )
            for prefetch_id in prefetch_ids
        ]
        # Select documents using maximal marginal relevance
        selected_indices = maximal_marginal_relevance(
            np.array(query_embedding), prefetch_embeddings, lambda_mult=lambda_mult, k=k
        )
        selected_docs = [prefetch_docs[i] for i in selected_indices]
        return selected_docs 
    def _collect_metadata(self, result: "Document") -> Dict[str, Any]:
        """Collect metadata from MemoryDB.
        Method ensures that there isn't a mismatch between the metadata
        and the index schema passed to this class by the user or generated
        by this class.
        Args:
            result (Document): redis.commands.search.Document object returned
                from Redis.
        Returns:
            Dict[str, Any]: Collected metadata.
        """
        # new metadata dict as modified by this method
        meta = {}
        for key in self._schema.metadata_keys:
            try:
                meta[key] = getattr(result, key)
            except AttributeError:
                # warning about attribute missing
                logger.warning(
                    f"Metadata key {key} not found in metadata. "
                    + "Setting to None. \n"
                    + "Metadata fields defined for this instance: "
                    + f"{self._schema.metadata_keys}"
                )
                meta[key] = None
        return meta
    def _prepare_query(
        self,
        query_embedding: List[float],
        k: int = 4,
        filter: Optional[InMemoryDBFilterExpression] = None,
        distance_threshold: Optional[float] = None,
        with_metadata: bool = True,
        with_distance: bool = False,
    ) -> Tuple["Query", Dict[str, Any]]:
        # Creates Redis query
        params_dict: Dict[str, Union[str, bytes, float]] = {
            "vector": _array_to_buffer(query_embedding, self._schema.vector_dtype),
        }
        # prepare return fields including score
        return_fields = [self._schema.content_key]
        if with_distance:
            return_fields.append("distance")
        if with_metadata:
            return_fields.extend(self._schema.metadata_keys)
        if distance_threshold:
            params_dict["distance_threshold"] = distance_threshold
            return (
                self._prepare_range_query(
                    k, filter=filter, return_fields=return_fields
                ),
                params_dict,
            )
        return (
            self._prepare_vector_query(k, filter=filter, return_fields=return_fields),
            params_dict,
        )
    def _prepare_range_query(
        self,
        k: int,
        filter: Optional[InMemoryDBFilterExpression] = None,
        return_fields: Optional[List[str]] = None,
    ) -> "Query":
        try:
            from redis.commands.search.query import Query
        except ImportError as e:
            raise ImportError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            ) from e
        return_fields = return_fields or []
        vector_key = self._schema.content_vector_key
        base_query = f"@{vector_key}:[VECTOR_RANGE $distance_threshold $vector]"
        if filter:
            base_query = str(filter) + " " + base_query
        query_string = base_query + "=>{$yield_distance_as: distance}"
        return (
            Query(query_string)
            .return_fields(*return_fields)
            .sort_by("distance")
            .paging(0, k)
            .dialect(2)
        )
    def _prepare_vector_query(
        self,
        k: int,
        filter: Optional[InMemoryDBFilterExpression] = None,
        return_fields: Optional[List[str]] = None,
    ) -> "Query":
        """Prepare query for vector search.
        Args:
            k: Number of results to return.
            filter: Optional metadata filter.
        Returns:
            query: Query object.
        """
        try:
            from redis.commands.search.query import Query
        except ImportError as e:
            raise ImportError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            ) from e
        return_fields = return_fields or []
        query_prefix = "*"
        if filter:
            query_prefix = f"{str(filter)}"
        vector_key = self._schema.content_vector_key
        base_query = f"({query_prefix})=>[KNN {k} @{vector_key} $vector AS distance]"
        query = (
            Query(base_query)
            .return_fields(*return_fields)
            .sort_by("distance")
            .paging(0, k)
            .dialect(2)
        )
        return query
    def _get_schema_with_defaults(
        self,
        index_schema: Optional[Union[Dict[str, ListOfDict], str, os.PathLike]] = None,
        vector_schema: Optional[Dict[str, Union[str, int]]] = None,
    ) -> "InMemoryDBModel":
        # should only be called after init of Redis (so Import handled)
        from langchain_aws.vectorstores.inmemorydb.schema import (
            InMemoryDBModel,
            read_schema,
        )
        schema = InMemoryDBModel()
        # read in schema (yaml file or dict) and
        # pass to the Pydantic validators
        if index_schema:
            schema_values = read_schema(index_schema)  # type: ignore
            schema = InMemoryDBModel(**schema_values)
            # ensure user did not exclude the content field
            # no modifications if content field found
            schema.add_content_field()
        # if no content_vector field, add vector field to schema
        # this makes adding a vector field to the schema optional when
        # the user just wants additional metadata
        try:
            # see if user overrode the content vector
            schema.content_vector
            # if user overrode the content vector, check if they
            # also passed vector schema. This won't be used since
            # the index schema overrode the content vector
            if vector_schema:
                logger.warning(
                    "`vector_schema` is ignored since content_vector is "
                    + "overridden in `index_schema`."
                )
        # user did not override content vector
        except ValueError:
            # set default vector schema and update with user provided schema
            # if the user provided any
            vector_field = self.DEFAULT_VECTOR_SCHEMA.copy()
            if vector_schema:
                vector_field.update(vector_schema)
            # add the vector field either way
            schema.add_vector_field(vector_field)
        return schema
    def _create_index_if_not_exist(self, dim: int = 1536) -> None:
        try:
            from redis.commands.search.indexDefinition import (  # type: ignore
                IndexDefinition,
                IndexType,
            )
        except ImportError:
            raise ImportError(
                "Could not import redis python package. "
                "Please install it with `pip install redis`."
            )
        # Set vector dimension
        # can't obtain beforehand because we don't
        # know which embedding model is being used.
        self._schema.content_vector.dims = dim
        # Check if index exists
        if not check_index_exists(self.client, self.index_name):
            # Create MemoryDB Index
            self.client.ft(self.index_name).create_index(
                fields=self._schema.get_fields(),
                definition=IndexDefinition(
                    prefix=[self.key_prefix], index_type=IndexType.HASH
                ),
            )
    def _calculate_fp_distance(self, distance: str) -> float:
        """Calculate the distance based on the vector datatype
        Two datatypes supported:
        - FLOAT32
        - FLOAT64
        if it's FLOAT32, we need to round the distance to 4 decimal places
        otherwise, round to 7 decimal places.
        """
        if self._schema.content_vector.datatype == "FLOAT32":
            return round(float(distance), 4)
        return round(float(distance), 7)
    def _check_deprecated_kwargs(self, kwargs: Mapping[str, Any]) -> None:
        """Check for deprecated kwargs."""
        deprecated_kwargs = {
            "redis_host": "redis_url",
            "redis_port": "redis_url",
            "redis_password": "redis_url",
            "content_key": "index_schema",
            "vector_key": "vector_schema",
            "distance_metric": "vector_schema",
        }
        for key, value in kwargs.items():
            if key in deprecated_kwargs:
                raise ValueError(
                    f"Keyword argument '{key}' is deprecated. "
                    f"Please use '{deprecated_kwargs[key]}' instead."
                )
    def _select_relevance_score_fn(self) -> Callable[[float], float]:
        if self.relevance_score_fn:
            return self.relevance_score_fn
        metric_map = {
            "COSINE": self._cosine_relevance_score_fn,
            "IP": self._max_inner_product_relevance_score_fn,
            "L2": self._euclidean_relevance_score_fn,
        }
        try:
            return metric_map[self._schema.content_vector.distance_metric]
        except KeyError:
            return _default_relevance_score 
def _generate_field_schema(data: Dict[str, Any]) -> Dict[str, Any]:
    """
    Generate a schema for the search index in Redis based on the input metadata.
    Given a dictionary of metadata, this function categorizes each metadata
        field into one of the three categories:
    - text: The field contains textual data.
    - numeric: The field contains numeric data (either integer or float).
    - tag: The field contains list of tags (strings).
    Args
        data (Dict[str, Any]): A dictionary where keys are metadata field names
            and values are the metadata values.
    Returns:
        Dict[str, Any]: A dictionary with three keys "text", "numeric", and "tag".
            Each key maps to a list of fields that belong to that category.
    Raises:
        ValueError: If a metadata field cannot be categorized into any of
            the three known types.
    """
    result: Dict[str, Any] = {
        "text": [],
        "numeric": [],
        "tag": [],
    }
    for key, value in data.items():
        # Numeric fields
        try:
            int(value)
            result["numeric"].append({"name": key})
            continue
        except (ValueError, TypeError):
            pass
        # None values are not indexed as of now
        if value is None:
            continue
        # if it's a list of strings, we assume it's a tag
        if isinstance(value, (list, tuple)):
            if not value or isinstance(value[0], str):
                result["tag"].append({"name": key})
            else:
                name = type(value[0]).__name__
                raise ValueError(
                    f"List/tuple values should contain strings: '{key}': {name}"
                )
            continue
        # Check if value is string before processing further
        if isinstance(value, str):
            result["text"].append({"name": key})
            continue
        # Unable to classify the field value
        name = type(value).__name__
        raise ValueError(
            "Could not generate MemoryDB index field type mapping "
            + f"for metadata: '{key}': {name}"
        )
    return result
def _prepare_metadata(metadata: Dict[str, Any]) -> Dict[str, Any]:
    """
    Prepare metadata for indexing in Redis by sanitizing its values.
    - String, integer, and float values remain unchanged.
    - None or empty values are replaced with empty strings.
    - Lists/tuples of strings are joined into a single string with a comma separator.
    Args:
        metadata (Dict[str, Any]): A dictionary where keys are metadata
            field names and values are the metadata values.
    Returns:
        Dict[str, Any]: A sanitized dictionary ready for indexing in Redis.
    Raises:
        ValueError: If any metadata value is not one of the known
            types (string, int, float, or list of strings).
    """
    def raise_error(key: str, value: Any) -> None:
        raise ValueError(
            f"Metadata value for key '{key}' must be a string, int, "
            + f"float, or list of strings. Got {type(value).__name__}"
        )
    clean_meta: Dict[str, Union[str, float, int]] = {}
    for key, value in metadata.items():
        if value is None:
            clean_meta[key] = ""
            continue
        # No transformation needed
        if isinstance(value, (str, int, float)):
            clean_meta[key] = value
        # if it's a list/tuple of strings, we join it
        elif isinstance(value, (list, tuple)):
            if not value or isinstance(value[0], str):
                clean_meta[key] = INMEMORYDB_TAG_SEPARATOR.join(value)
            else:
                raise_error(key, value)
        else:
            raise_error(key, value)
    return clean_meta
[docs]
class InMemoryVectorStoreRetriever(VectorStoreRetriever):
    """Retriever for InMemoryVectorStore."""
    vectorstore: InMemoryVectorStore
    """InMemoryVectorStore."""
    search_type: str = "similarity"
    """Type of search to perform. Can be either
    'similarity',
    'similarity_distance_threshold',
    'similarity_score_threshold'
    """
    search_kwargs: Dict[str, Any] = {
        "k": 4,
        "score_threshold": 0.9,
        # set to None to avoid distance used in score_threshold search
        "distance_threshold": None,
    }
    """Default search kwargs."""
    allowed_search_types = [
        "similarity",
        "similarity_distance_threshold",
        "similarity_score_threshold",
        "mmr",
    ]
    """Allowed search types."""
    class Config:
        """Configuration for this pydantic object."""
        arbitrary_types_allowed = True
    def _get_relevant_documents(
        self, query: str, *, run_manager: CallbackManagerForRetrieverRun
    ) -> List[Document]:
        if self.search_type == "similarity":
            docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
        elif self.search_type == "similarity_distance_threshold":
            if self.search_kwargs["distance_threshold"] is None:
                raise ValueError(
                    "distance_threshold must be provided for "
                    + "similarity_distance_threshold retriever"
                )
            docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
        elif self.search_type == "similarity_score_threshold":
            docs_and_similarities = (
                self.vectorstore.similarity_search_with_relevance_scores(
                    query, **self.search_kwargs
                )
            )
            docs = [doc for doc, _ in docs_and_similarities]
        elif self.search_type == "mmr":
            docs = self.vectorstore.max_marginal_relevance_search(
                query, **self.search_kwargs
            )
        else:
            raise ValueError(f"search_type of {self.search_type} not allowed.")
        return docs
    async def _aget_relevant_documents(
        self, query: str, *, run_manager: AsyncCallbackManagerForRetrieverRun
    ) -> List[Document]:
        if self.search_type == "similarity":
            docs = await self.vectorstore.asimilarity_search(
                query, **self.search_kwargs
            )
        elif self.search_type == "similarity_distance_threshold":
            if self.search_kwargs["distance_threshold"] is None:
                raise ValueError(
                    "distance_threshold must be provided for "
                    + "similarity_distance_threshold retriever"
                )
            docs = await self.vectorstore.asimilarity_search(
                query, **self.search_kwargs
            )
        elif self.search_type == "similarity_score_threshold":
            docs_and_similarities = (
                await self.vectorstore.asimilarity_search_with_relevance_scores(
                    query, **self.search_kwargs
                )
            )
            docs = [doc for doc, _ in docs_and_similarities]
        elif self.search_type == "mmr":
            docs = await self.vectorstore.amax_marginal_relevance_search(
                query, **self.search_kwargs
            )
        else:
            raise ValueError(f"search_type of {self.search_type} not allowed.")
        return docs
[docs]
    def add_documents(self, documents: List[Document], **kwargs: Any) -> List[str]:
        """Add documents to vectorstore."""
        return self.vectorstore.add_documents(documents, **kwargs) 
[docs]
    async def aadd_documents(
        self, documents: List[Document], **kwargs: Any
    ) -> List[str]:
        """Add documents to vectorstore."""
        return await self.vectorstore.aadd_documents(documents, **kwargs)